精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)是定义在R上的奇函数,且当x<0时,
(1)求f(x)的表达式;
(2)判断并证明函数f(x)在区间(0,+∞)上的单调性.

【答案】
(1)解:∵f(x)是奇函数,

∴对定义域R内任意的x,都有f(﹣x)=﹣f(x)

令x=0得,f(0)=﹣f(0),即f(0)=0

又当x>0时,﹣x<0,此时

综合可得:


(2)解:函数f(x)在区间(0,+∞)上是减函数,下面给予证明.

设0<x1<x2,则

=

∵0<x1<x2

∴f(x1)﹣f(x2)>0,即f(x1)>f(x2

故函数f(x)在区间(0,+∞)上是减函数


【解析】(1)易得f(0)=0,令x>0,则﹣x<0,代入已知结合函数的奇偶性可得解析式;(2)函数f(x)在区间(0,+∞)上是减函数,可用定义法证明.
【考点精析】本题主要考查了函数单调性的判断方法的相关知识点,需要掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】各项均为正数的数列{an}中,a1=1,Sn是数列{an}的前n项和,对任意n∈N* , 有2Sn=2pan2+pan﹣p(p∈R)
(1)求常数p的值;
(2)求数列{an}的通项公式;
(3)记bn= ,求数列{bn}的前n项和T.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系 中,以坐标原点O为极点,以x轴正半轴为极轴建立极坐标系.已知曲线 (t为参数),曲线 ;
(1)将曲线 化成普通方程,将曲线 化成参数方程;
(2)判断曲线 和曲线 的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,若对于任意,存在,使得成立,则称集合是“好集合”.给出下列4个集合:①;②;③;④.其中为“好集合”的序号是( )

A. ①②④ B. ②③ C. ③④ D. ①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1A2A3A4A5A6和4名女志愿者B1B2B3B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.

(I)求接受甲种心理暗示的志愿者中包含A1但不包含的频率。

(II)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sinx+cosx,x∈R.
(1)求函数f(x)的最小正周期和最大值;
(2)函数y=f(x)的图象可由y=sinx的图象经过怎么的变换得到?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的展开式的二项式系数之和为32,且展开式中含x3项的系数为80.
(1)求m和n的值;
(2)求展开式中含x2项的系数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=kax(k,a为常数,a>0且a≠1)的图象过点A(0,1),B(3,8).
(1)求函数f(x)的解析式;
(2)若函数g(x)= 是奇函数,求b的值;
(3)在(2)的条件下判断函数g(x)在(0,+∞)上的单调性,并用定义证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=( x
(1)求函数f(x)的解析式;
(2)在所给坐标系中画出函数f(x)的图象,并根据图象写出函数f(x)的单调区间.

查看答案和解析>>

同步练习册答案