精英家教网 > 高中数学 > 题目详情
如果有穷数列a1,a2,a3,…,am(m为正整数)满足条件a1=am,a2=am-1,…,am=a1,即ai=am-i+1(i=1,2,…,m),我们称其为“对称数列”. 例如,数列1,2,5,2,1与数列8,4,2,2,4,8都是“对称数列”. 设{bn}是7项的“对称数列”,其中b1,b2,b3,b4是等比数列,且b1=2,b3=8.则{bn}数列各项的和为
44或-4
44或-4
分析:由b1,b2,b3,b4是等比数列且b1=2,b3=8可得公比q2=4,从而可求得q=±2,结合已知定义可分别求出数列的各项,代入可求和
解答:解:由b1,b2,b3,b4是等比数列且b1=2,b3=8可得公比q2=4
∴q=±2
若q=2,则数列{bn}的各项分别为:2,4,8,16,8,4,2,此时数列的各项和为:44
若q=-2,则数列{bn}的各项分别为:2,-4,8,-16,8,-4,2,此时数列的各项和为:-4
故答案为:44或-4
点评:本题以新定义“对称数列”为载体,主要考查了等比数列的通项公式的应用,解答新定义的试题的关键是把题目中的定义转化已经学过的知识进行解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果有穷数列a1,a2,a3,…,am(m为正整数)满足a1=am,a2=am-1,…,am=a1.即ai=am-i+1(i=1,2,…,m),我们称其为“对称数列“例如,数列1,2,5,2,1与数列8,4,2,2,4,8都是“对称数列”.设{bn}是项数为2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,23,…,2m-1依次为该数列中连续的前m项,则数列{bn}的前2010项和S2010可以是
(1)22010-1     (2)21006-2       (3)2m+1-22m-2010-1
其中正确命题的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

如果有穷数列a1,a2,…,an(n∈N*),满足条件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1(i=1,2,…,n),我们称其为“对称数列”.例如:数列1,2,3,4,3,2,1就是“对称数列”.已知数列bn是项数为不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,…,2m-1依次为该数列中前连续的m项,则数列bn的前2008项和S2008可以是:①22008-1;②2(22008-1);③3•2m-1-22m-2009-1;④2m+1-22m-2008-1.
其中命题正确的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

如果有穷数列a1,a2,…,an(n∈N*)满足条件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1,(i=1,2,…,n)我们称其为“对称数列”.例如:数列1,2,3,3,2,1 和数列1,2,3,4,3,2,1都为“对称数列”.已知数列{bn}是项数不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,…,2m-1依次为该数列中连续的前m项,则数列{bn}的前2009项和S2009所有可能为:①22009-1  ②2(22009-1)③3•2m-1-22m-2010-1  ④2m+1-22m-2009-1;其中正确的有(  )个.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

如果有穷数列a1a2,…,an(n∈N*)满足条件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1,(i=1,2,…,n)我们称其为“对称数列”.例如:数列1,2,3,3,2,1 和数列1,2,3,4,3,2,1都为“对称数列”.已知数列{bn}是项数不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,…,2m-1依次为该数列中连续的前m项,则数列{bn}的前2009项和S2009所有可能的取值的序号为(  )
①22009-1   ②2(22009-1)③3•2m-1-22m-2010-1   ④2m+1-22m-2009-1.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省高三第五次月考理科数学 题型:填空题

如果有穷数列a1,a2,…an(a∈N*)满足条件:,我们称

其为“对称数列”,例如:数列1,2,3,3,2,1和数列1,2,3,4,3,2,1都为“对称数列”。已知数列{bn}是项数不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,……,2m-1依次为该数列中连续的前m项,则数列的前2009项和S2009所有可能的取值的序号为           

①  22009—1    ②2·(22009—1)    ③3×2m-1—22m-2010—1    ④2m+1—22m-2009—1

 

查看答案和解析>>

同步练习册答案