精英家教网 > 高中数学 > 题目详情
给出下列四个结论:
①抛物线y=-2x2的焦点坐标是(0,-
1
8
)

②已知直线l1:ax+3y-1=0,l2:x+by+1=0则l1⊥l2充要条件是
a
b
=-3

(mx-
1
x
)10
的展开式中x4项的系数为210,则实数m的值为1;
④回归直线
?
y
=bx+a
必过点(
.
x
.
y
)

其中结论正确的是
①④
①④
.(将所有正确结论的序号都写上)
分析:①先将抛物线方程化为标准形式,再求其焦点坐标;②两直线垂直的充要条件为a+3b=0,举反例即可判断其错误;③利用二项式定理,求出已知展开式的通项公式,继而求其4次方项系数,即可解得m的值;④由线性回归直线方程的参数计算公式易知④正确
解答:解:①抛物线y=-2x2的标准方程为x2=-
1
2
y,其焦点坐标为(0,-
1
8
),①正确;
②若a=b=0,则已知两直线仍然垂直,但
a
b
=-3
不成立,②错误;
(mx-
1
x
)
10
的通项公式为Tr+1=
C
r
10
×(mx)10-r×(-1)r×x-
r
2
=(-1)r×m10×
C
r
10
×x10-
3r
2
,其x4项的系数为m10×
C
4
10
=210m10=210,解得m=±1,③错误;
④由线性回归直线方程的参数计算公式易知
.
y
=b
.
x
+a
,即回归直线
?
y
=bx+a
必过点(
.
x
.
y
)
.④正确;
故答案为 ①④
点评:本题主要考查了抛物线的标准方程、直线互相垂直的充要条件、二项式定理应用、线性回归方程的意义等基础知识,属基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列四个结论:①函数y=ax(a>0且a≠1)与函数y=logaax(a>0且a≠1)的定义域相同;②函数y=k3x(k>0)(k为常数)的图象可由函数y=3x的图象经过平移得到;③函数y=
1
2
+
1
2x-1
(x≠0)是奇函数且函数y=x(
1
3x-1
+
1
2
)
(x≠0)是偶函数;④函数y=cos|x|是周期函数.其中正确结论的序号是
 
.(填写你认为正确的所有结论序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1的棱长为1,线段AC1上有两个动点E,F,且EF=
3
3
.给出下列四个结论:
①BF∥CE;
②CE⊥BD;
③三棱锥E-BCF的体积为定值;
④△BEF在底面ABCD内的正投影是面积为定值的三角形;
其中,正确结论的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三棱锥P-ABC中,D为PA的中点,O为△ABC的中心,给出下列四个结论:①OD∥平面PBC;  ②OD⊥PA;③OD⊥BC;  ④PA=2OD.其中正确结论的序号是
③④
③④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•马鞍山模拟)给出下列四个结论:
①命题''?x∈R,x2-x>0''的否定是''?x∈R,x2-x≤0''
②“若am2<bm2,则a<b”的逆命题为真;
③已知直线l1:ax+2y-1=0,l1:x+by+2=0,则l1⊥l2的充要条件是
ab
=-2

④对于任意实数x,有f(-x)=-f(x),g(-x)=g(x)且x>0时,f'(x)>0,g'(x)>0,则x<0时,f'(x)>g'(x).
其中正确结论的序号是
①④
①④
(填上所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波二模)已知平面α、β、γ、和直线l,m,且l⊥m,α⊥γ,α∩γ=m,γ∩β=l;给出下列四个结论:①β⊥γ ②l⊥α③m⊥β;④α⊥β.其中正确的是(  )

查看答案和解析>>

同步练习册答案