精英家教网 > 高中数学 > 题目详情

【题目】已知: 命题p:若函数f(x)=x2+|x﹣a|是偶函数,则a=0.
命题q:m∈(0,+∞),关于x的方程mx2﹣2x+1=0有解.
在①p∨q;②p∧q;③(¬p)∧q;④(¬p)∨(¬q)中为真命题的是(
A.②③
B.②④
C.③④
D.①④

【答案】D
【解析】解:若函数f(x)=x2+|x﹣a|为偶函数,则(﹣x)2+|﹣x﹣a|=x2+|x﹣a|,即有|x+a|=|x﹣a|,易得a=0,故命题p为真;

当m>0时,方程的判别式△=4﹣4m不恒大于等于零,

当m>1时,△<0,此时方程无实根,故命题q为假,

即p真q假,

故命题p∨q为真,p∧q为假,(¬p)∧q为假,(¬p)∨(¬q)为真.

综上可得真确命题为①④.

故选:D.

【考点精析】利用复合命题的真假和命题的真假判断与应用对题目进行判断即可得到答案,需要熟知“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真;两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3+bx+1的图象经过点(1,﹣3)且在x=1处f(x)取得极值.求:
(1)函数f(x)的解析式;
(2)f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学举办电脑知识竞赛,满分为100分,80分以上为优秀(含80分),现将高一两个班参赛学生的成绩进行整理后分成5组;第一组[50,60),第二组[60,70),第三组[70,80),第四组[80,90),第五组[90,100],其中第一、三、四、五小组的频率分别为0.30、0.15、0.10、0.05,而第二小组的频数是40,则参赛的人数以及成绩优秀的概率分别是(
A.50,0.15
B.50,0.75
C.100,0.15
D.100,0.75

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设α,β是两个不同的平面,l是一条直线,以下命题:①若l⊥α,α⊥β,则lβ,②若l∥α,α∥β,则lβ③若l⊥α,α∥β,则l⊥β,④若l∥α,α⊥β,则l⊥β 其中正确命题的个数是(
A.1
B.2
C.3
D.0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=loga(x2﹣2x)(0<a<1)的单调递增区间是 ( )
A.(1,+∞)
B.(2,+∞)
C.(﹣∞,1)
D.(﹣∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知随机变量X服从正态分布N(3,1),且P(X≥4)=0.1587,则P(2<X<4)=(
A.0.6826
B.0.3413
C.0.4603
D.0.9207

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】证明:a2+b2+c2=ab+bc+ca的充要条件是△ABC为等边三角形.这里a,b,c是△ABC的三条边.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b∈R,i是虚数单位,若a﹣i与2+bi互为共轭复数,则(a+bi)2=(
A.5﹣4i
B.5+4i
C.3﹣4i
D.3+4i

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是偶函数,x∈R,当x>0时,f(x)为增函数,若x1<0,x2>0,且|x1|<|x2|,则(
A.f(﹣x1)>f(﹣x2
B.f(﹣x1)<f(﹣x2
C.﹣f(x1)>f(﹣x2
D.﹣f(x1)<f(﹣x2

查看答案和解析>>

同步练习册答案