精英家教网 > 高中数学 > 题目详情
18.已知函数$f(x)=a{x^2}+blnx,a,b∈R,f(1)=\frac{1}{2},f'(2)=1$.
(Ⅰ)求f(x)的图象在点(1,f(1))处的切线方程;
(Ⅱ)求f(x)在区间$[{1,\sqrt{e}}]$上的值域.

分析 (Ⅰ)求出函数的导数,由条件解方程可得a,b,求得切点和切线的斜率,由点斜式方程可得切线的方程;
(Ⅱ)求出函数的导数,求得f(x)在区间$[{1,\sqrt{e}}]$上的单调区间,可得极小值也为最小值,求得端点处的函数值,可得最大值,即可得到函数的值域.

解答 解:(Ⅰ)f(x)=ax2+blnx的导数为f′(x)=2ax+$\frac{b}{x}$,
由f(1)=$\frac{1}{2}$,f′(2)=1,可得a=$\frac{1}{2}$,4a+$\frac{b}{2}$=1,
解方程可得b=-2,即有f(x)=$\frac{1}{2}$x2-2lnx,f′(1)=-1,
则在点(1,f(1))处的切线方程为y-$\frac{1}{2}$=-(x-1),
即为2x+2y-3=0;
(Ⅱ)f(x)的导数为f′(x)=x-$\frac{2}{x}$=$\frac{(x-\sqrt{2})(x+\sqrt{2})}{x}$,
当1<x<$\sqrt{2}$时,f′(x)<0,f(x)递减;
当$\sqrt{2}$<x<$\sqrt{e}$时,f′(x)>0,f(x)递增.
即有f(x)在x=$\sqrt{2}$处取得极小值,也为最小值,且为1-ln2;
f(1)=$\frac{1}{2}$,f($\sqrt{e}$)=$\frac{1}{2}$e-1,
由f($\sqrt{e}$)-f(1)=$\frac{e-3}{2}$<0,即有f($\sqrt{e}$)<f(1),
则f(x)的值域为[1-ln2,$\frac{1}{2}$].

点评 本题考查导数的运用:求切线的方程和单调区间、极值和最值,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=2|x+1|+ax(x∈R),若函数f(x)存在两个零点,则a的取值范围是(  )
A.(0,1)B.(0,2)C.[0,2)D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0.
(1)求证:对m∈R,直线l与圆C总有两个不同的交点.
(2)若定点P(1,1)分弦AB为$\frac{AP}{PB}$=$\frac{1}{2}$,求此直线l 的方程.
(3)求弦AB中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知α为锐角,cos(α$+\frac{4n+1}{4}$π)=$\frac{1}{2}$,(n∈Z),求cos(α-$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设变量x,y满足约束条件$\left\{\begin{array}{l}2x+y≤4\\ x+2y≥2\\ x≥0\end{array}\right.$,则目标函数z=x-y的最小值为(  )
A.2B.-4C.-1D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知抛物线y=ax2+bx+c通过点P(1,1),且在点Q(2,-1)处的切线平行于直线y=x,则抛物线方程为(  )
A.y=3x2-11x+9B.y=3x2+11x+9C.y=3x2-11x-9D.y=-3x2-11x+9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,AB是长轴长为6,焦距为2的椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右顶点,直线l的方程为x=9,M是椭圆C上异于A,B的一点,直线AM交l于点P.
(1)求椭圆方程;
(2)以MP为直径的圆与直线MB交于点Q,试证明:直线PQ与x轴的交点R为定点,并求该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数y=f(x)的图象在点M(3,f(3))处的切线方程是y=$\frac{1}{3}$x+$\frac{2}{3}$,则f(3)+f′(3)的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设f(x)=acosx+b的最大值是1,最小值是-3,试确定g(x)=bsin(ax+$\frac{π}{3}$)的最大值.

查看答案和解析>>

同步练习册答案