精英家教网 > 高中数学 > 题目详情
如图,已知三棱柱ABC-A1B1C1的所有棱长都相等,且侧棱垂直于底面,由
B沿棱柱侧面经过棱C C1到点A1的最短路线长为,设这条最短路线与CC1的交
点为D.
(1)求三棱柱ABC-A1B1C1的体积;
(2)在平面A1BD内是否存在过点D的直线与平面ABC平行?证明你的判断;
(3)证明:平面A1BD⊥平面A1ABB1
(1)  (2)在平面A1BD内存在过点D的直线与平面ABC平行  
(3)证明见解析
(1)如图,将侧面BB1C1C绕棱CC1旋转120°使其与侧面AA1C1C在同一平面上,点B运动到点B2的位置,连接A1B2,则A1B2就是由点B沿棱柱侧面经过棱CC1到点A1的最短路线。                                            ……………………………………1分
设棱柱的棱长为,则B2C=AC=AA1,
∵CD∥AA1       ∴D为CC1的中点,……………………………2分
在Rt△A1AB2中,由勾股定理得
 解得,……………………4分
 ……………………………………6分
(2)设A1B与AB1的交点为O,连结BB2,OD,则……………………………7分
平面平面 ∴平面
即在平面A1BD内存在过点D的直线与平面ABC平行   ……………………………9分
(3)连结AD,B1D∵
  ∴……………………………11分
 ∵    ∴平面A1ABB1     ……………………………13分
又∵平面A1BD   ∴平面A1BD⊥平面A1ABB1  ……………………………………14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图3,在正三棱柱中,AB=4,,点DBC的中点,
EAC上,且DEE

(Ⅰ)证明:平面平面
(Ⅱ)求直线AD和平面所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P—ABCD中,PA⊥底面ABCD,∠, AB∥CD,AD=CD=2AB=2,E,F分别是PC,CD的中点.
(Ⅰ)证明:CD⊥平面BEF;
(Ⅱ)设
k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BCM为BC的中点
(Ⅰ)证明:AMPM
(Ⅱ)求二面角PAMD的大小;
(Ⅲ)求点D到平面AMP的距离

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,
已知正三棱柱的底面边长是2,D是侧棱的中点,平面ABD和平面的交线为MN.
 (Ⅰ)试证明
 (Ⅱ)若直线AD与侧面所成的角为,试求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥PABCD的底面是矩形,侧面PAD
是正三角形,且侧面PAD⊥底面ABCDE为侧棱PD的中点.
(I)试判断直线PB与平面EAC的关系
(文科不必证明,理科必须证明);
(II)求证:AE⊥平面PCD
(III)若ADAB,试求二面角APCD
的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图组合体中,三棱柱的侧面是圆柱的轴截面,是圆柱底面圆周上不与重合一个点。

(Ⅰ)求证:无论点如何运动,平面平面
(Ⅱ)当点是弧的中点时,求四棱锥与圆柱的体积比。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,PC⊥平面ABC,PM∥CB,∠ACB=120°,PM=AC=1,BC=2,异面直线AM与直线PC所成的角为60°.
(Ⅰ)求二面角M-AC-B大小的正切值;
(Ⅱ)求三棱锥P-MAC的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P—ABCD中,底面ABCD是∠DAB=60°且边长为1的菱形。侧面PAD是正三角形,其所在侧面垂直底面ABCD,G是AD中点。
(1)求异面直线BG与PC所成的角;
(2)求点G到面PBC的距离;
(3)若E是BC边上的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD,并说明理由。

查看答案和解析>>

同步练习册答案