分析 (1)依题意,由其焦点坐标与渐近线方程可求得a=$\frac{\sqrt{3}}{3}$,b=1,从而可得双曲线C的方程;
(2)联立直线y=kx+1与双曲线3x2-y2=1可得(3-k2)x2-2kx-2=0,设A(x1,y1)、B(x2,y2),依题意,x1x2+y1y2=0,利用韦达定理,继而可解得k的值.
解答 解:(1)由题意c=$\frac{2\sqrt{3}}{3}$,a=$\frac{\sqrt{3}}{3}$,b=1,
∴双曲线C方程为$\frac{{x}^{2}}{\frac{1}{3}}-{y}^{2}$=1;
(2)由直线L:y=kx+1与双曲线,联立得(3-k2)x2-2kx-2=0,
由△>0,且3-k2≠0,得-$\sqrt{6}$<k<$\sqrt{6}$,且k≠±$\sqrt{3}$.
设A(x1,y1)、B(x2,y2),
因为以AB为直径的圆过原点,所以OA⊥OB,
所以 x1x2+y1y2=0,又x1+x2=$\frac{2k}{3-{k}^{2}}$,x1x2=$\frac{2}{{k}^{2}-3}$
∴y1y2=(kx1+1)(kx2+1)=k2x1x2+k(x1+x2)+1,
∴k2x1x2+k(x1+x2)+1+x1x2=0,
即k2$\frac{2}{{k}^{2}-3}$+k•($\frac{2k}{3-{k}^{2}}$)+1+$\frac{2}{{k}^{2}-3}$=0,
解得k=±1.
点评 本题考查双曲线的标准方程和性质,着重考查直线与圆锥曲线的位置关系,突出考查韦达定理的应用,考查转化思想与综合运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{2}$ | B. | $\frac{3π}{4}$ | C. | π | D. | 2π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $1-\frac{π}{8}$ | B. | $\frac{π}{8}$ | C. | $1-\frac{π}{4}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com