精英家教网 > 高中数学 > 题目详情
12.函数f(x)=-$\frac{1}{2}$x2+lnx的极值点是(  )
A.x=-1B.x=-$\frac{1}{2}$C.x=1D.x=$\frac{1}{2}$

分析 求出原函数的导函数,确定出函数的单调区间,由此求得函数的极值点.

解答 解:由f(x)=-$\frac{1}{2}$x2+lnx,得f′(x)=$\frac{(1-x)(1+x)}{x}$(x>0),
当0<x<1时,f′(x)>0;
当x>1时,f′(x)<0.
∴函数f(x)在(0,1)上为增函数,在(1,+∞)上为减函数.
∴函数f(x)=-$\frac{1}{2}$x2+lnx的极值点为x=1.
故选:C.

点评 本题考查了利用导数研究函数的单调性、极值,关键是正确求出原函数的导函数,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设偶函数f(x)满足f(x)=-x3+6(x≥0),则{x|f(x-2)>-2}=(  )
A.(-2,4)B.(0,4)C.(0,6)D.(-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.[重点中学做]设H、P是△ABC所在平面上异于A、B、C的两点,用$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,$\overrightarrow{h}$分别表示向量$\overrightarrow{PA}$,$\overrightarrow{PB}$,$\overrightarrow{PC}$,$\overrightarrow{PH}$.已知$\overrightarrow{a}$•$\overrightarrow{b}$+$\overrightarrow{c}$•$\overrightarrow{h}$=$\overrightarrow{b}$•$\overrightarrow{c}$+$\overrightarrow{a}$•$\overrightarrow{h}$=$\overrightarrow{c}$•$\overrightarrow{a}$+$\overrightarrow{b}$•$\overrightarrow{h}$,|$\overrightarrow{AH}$|=1,|$\overrightarrow{BH}$|=$\sqrt{2}$,|$\overrightarrow{BC}$|=$\sqrt{3}$,则∠C=(  )
A.$\frac{5π}{12}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.用[x]表示不超过x的最大整数,例如[3]=3,[1.2]=1,[-1.3]=-2.已知数列{an}满足a1=1,an+1=an2+an,则[$\frac{1}{{{a_1}+1}}+\frac{1}{{{a_2}+1}}+…+\frac{1}{{{a_{2016}}+1}}$]=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列函数中,满足“f(mn)=f(m)+f(n)”的函数是(  )
A.f(x)=xB.f(x)=x2C.f(x)=2xD.f(x)=lgx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某工厂生产的甲、乙、丙三种不同型号的产品数量之比为1:3:5,为了解三种产品的质量,现用分层抽样的方法从该工厂生产的甲、乙、丙三种产品中抽出样本容量为n的样本,若样本中乙型产品有27件,则n值为81.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=sin(2x-$\frac{π}{4}$)+1,x∈R.
(1)求f($\frac{π}{8}$)的值,并求函数f(x)的最小正周期;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求下列各值.
(1)若($\sqrt{x}$+$\frac{2}{\root{3}{x}}$)n的展开式中第9项与第10项的二项式系数相等,求x的一次项系数;
(2)已知(2x-1)7=a0x7+a1x6+a2x5+…+a7,求a1+a3+a5+a7的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.当x∈(-∞,-1]时,不等式(m2-m)•4x-2x<0恒成立,则实数m的取值范围是(-1,2).

查看答案和解析>>

同步练习册答案