精英家教网 > 高中数学 > 题目详情

(本题11分)如图,矩形ABCD中,AB=6,BC=2,点O是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点出发,以每秒1个单位长度的速度沿射线PA匀速运动,点E、F同时出发,当两点相遇时停止运动,在点E、F的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧.设运动的时间为t秒(t≥0).
(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值;
(2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,求出S与t之间的函数关系式和相应的自变量t的取值范围;

解:(1)当边FG恰好经过点C时,∠CFB=60°,BF=3﹣t,在Rt△CBF中,BC=2,tan∠CFB=,即tan60=,解得BF=2,即3﹣t=2,t=1,∴当边FG恰好经过点C时,t=1;
(2)当0≤t<1时,S=2t+4
当1≤t<3时,S=﹣t2+3t+
当3≤t<4时,S=﹣4t+20
当4≤t<6时,S=t2﹣12t+36

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(每小题5分,共10分)计算下列各式的值:
(1) ;   (2)  

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设二次函数,已知不论为何实数恒有,
(1)求证:
(2)求证:
(3)若函数的最大值为8,求值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(1)当每辆车的月租金定为3600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数和点,过点作曲线的两条切线,切点分别为
(1)求证:为关于的方程的两根;
(2)设,求函数的表达式;
(3)在(2)的条件下,若在区间内总存在个实数(可以相同),使得不等式成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)某工厂每天生产某种产品最多不超过40件,并且在生产过程中产品的正品率与每日生产产品件数()间的关系为,每生产一件正品盈利4000元,每出现一件次品亏损2000元.(注:正品率=产品的正品件数÷产品总件数×100%)
(Ⅰ)将日利润(元)表示成日产量(件)的函数;
(Ⅱ)求该厂的日产量为多少件时,日利润最大?并求出日利润的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知某商品的价格上涨x%,销售的数量就减少mx%,其中m为正的常数。
(1)当m=时,该商品的价格上涨多少,就能使销售的总金额最大?
(2)如果适当地涨价,能使销售总金额增加,求m的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知,若函数在区间
的最大值为,最小值为,令.
(1)求的函数表达式;
(2)判断函数在区间上的单调性,并求出的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知函数上可导,且,则函数的解析式为(   )

A. B.
C. D.

查看答案和解析>>

同步练习册答案