精英家教网 > 高中数学 > 题目详情

(本小题满分12分)

过抛物线焦点垂直于对称轴的弦叫做抛物线的通径。如图,已知抛物线,过其焦点F的直线交抛物线于 两点。过作准线的垂线,垂足分别为.

(1)求出抛物线的通径,证明都是定值,并求出这个定值;
(2)证明: .

(1)通径,证明:,是定值;AB与x轴不垂直时,设AB:所以是定值(2)

解析试题分析:焦点,准线
(1),通径,是定值.
AB与x轴不垂直时,设AB:
,所以是定值.
(2)
所以
方法二:由抛物线知:
考点:抛物线性质及直线与抛物线相交
点评:直线与圆锥曲线相交时,联立方程利用韦达定理是常用的方法

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题14分)抛物线与直线相交于两点,且
(1)求的值。
(2)在抛物线上是否存在点,使得的重心恰为抛物线的焦点,若存在,求点的坐标,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆)的一个顶点为,离心率为,直线与椭圆交于不同的两点.(1) 求椭圆的方程;(2) 当的面积为时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的两个焦点分别为,离心率
(1)求椭圆方程;
(2)一条不与坐标轴平行的直线l与椭圆交于不同的两点M、N,且线段MN中点的横坐标为–,求直线l倾斜角的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)直线l:y=kx+1与双曲线C:的右支交于不同的两点A,B
(Ⅰ)求实数k的取值范围;
(Ⅱ)是否存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F?若存在,求出k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分16分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分6分.
(文)已知椭圆的一个焦点为,点在椭圆上,点满足(其中为坐标原点), 过点作一斜率为的直线交椭圆于两点(其中点在轴上方,点在轴下方) .

(1)求椭圆的方程;
(2)若,求的面积;
(3)设点为点关于轴的对称点,判断的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知是长轴为的椭圆上三点,点是长轴的一个顶点,过椭圆中心,且.

(1)建立适当的坐标系,求椭圆方程;
(2)如果椭圆上两点使直线轴围成底边在轴上的等腰三角形,是否总存在实数使?请给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分) 设椭圆E中心在原点,焦点在x轴上,短轴长为4,点M(2,)在椭圆上,。
(1)求椭圆E的方程;
(2)设动直线L交椭圆E于A、B两点,且,求△OAB的面积的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知双曲线与椭圆有相同焦点,且经过点
求该双曲线方程,并求出其离心率、渐近线方程,准线方程。

查看答案和解析>>

同步练习册答案