精英家教网 > 高中数学 > 题目详情
10.已知A={x|x2-8x+15=0},B={x|x2-ax+2a+1=0},B⊆A,求a的取值范围.

分析 先确定集合A的元素,利用B⊆A,确定a的取值集合.

解答 解:集合A={x|x2-8x+15=0}={3,5},
由题意B⊆A,则有
①若B=∅,则△=a2-4(2a+1)<0,即a2-8a-4<0,解得4-2$\sqrt{5}$<a<4+2$\sqrt{5}$.
②若B≠∅,则B={3}或B={5}或B={3,5},此时均不成立.
综上,4-2$\sqrt{5}$<a<4+2$\sqrt{5}$.

点评 本题考查子集的运算、集合间的相互关系,要注意分类讨论.解题时要熟练掌握基本概念.属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.求证:
(1)(sin2α-cos2α)2=1-sin4α
(2)1+cos2θ+2sin2θ=2
(3)tan($\frac{x}{2}$+$\frac{π}{4}$)+tan($\frac{x}{2}$-$\frac{π}{4}$)=2tanx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某车间工人按日产量分组资料如下:
日产量(件)工人人数占全部工人数比重(%)
1512
2018
2524
3030
3516
总计100
计算该车间工人平均日产量.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.以下命题正确命题的个数为(  )
(1)化极坐标方程ρ2cosθ-ρ=0为直角坐标方程为x2+y2=0或y=1
(2)集合A={x||x+1|<1},B=$\{x|y=-\sqrt{2x-{x^2}}\}$,则A⊆B
(3)若函数y=f(x)在区间(a,b)内可导,且x0∈(a,b),则$\underset{lim}{h→0}$$\frac{f({x}_{0}+h)-f({x}_{0}-h)}{h}$的值为2f′(x0
(4)若曲线y=ex+a与直线y=x相切,则a的值为0
(5)将点P(-2,2)变换为P′(-6,1)的伸缩变换公式为$\left\{\begin{array}{l}{x′=3x}\\{y′=2y}\end{array}\right.$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=ex+ax2,下列命题:
①对于任意a∈(0,+∞),都有f(x)>0恒成立;
②对于任意a∈(0,+∞),函数f(x)都存在最小值;
③存在a∈(-∞,0),使函数f(x)有三个零点;
④存在a∈(-∞,0),使函数f(x)有减区间.
其中正确命题的序号是①②④.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知3x=5y,且$\frac{1}{x}$+$\frac{1}{y}$=3,则x+y=$\frac{1}{3}$(2+log35+log53).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知sin(α+$\frac{π}{6}$)=$\frac{1}{3}$,则cos(2α-$\frac{2π}{3}$)的值是-$\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知命题p:($\frac{1}{3}$)${\;}^{a-{a}^{2}}$<9,q:|2a-1|<4,若命题“p∨q”为真命题,命题“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足a1=2,an+1=$\frac{1+{a}_{n}}{1-{a}_{n}}$(n∈N*),求a1a2a3…a2011a2012的值.

查看答案和解析>>

同步练习册答案