精英家教网 > 高中数学 > 题目详情
15.圆x2+y2=16的切线与x轴、y轴的正半轴分别交于A、B两点,则|AB|最小值为8.

分析 设直线的方程为bx+ay-ab=0,由直线和圆相切可得a2b2=16(a2+b2),由基本不等式可得$\sqrt{{a}^{2}+{b}^{2}}$的最小值,即得答案.

解答 解:由题意设直线的方程为:$\frac{x}{a}$+$\frac{y}{b}$=1,即bx+ay-ab=0,
∵圆心(0,0)到的距离为半径4,
∴$\frac{|ab|}{\sqrt{{b}^{2}+{a}^{2}}}$=4,平方整理可得a2b2=16(a2+b2),
由基本不等式可得16(a2+b2)=a2b2≤($\frac{{a}^{2}+{b}^{2}}{2}$)2
∴解不等式可得|AB|=$\sqrt{{a}^{2}+{b}^{2}}$≥8,
当且仅当a=b=4$\sqrt{2}$时等号成立,
故答案为:8.

点评 本题考查圆的切线,涉及点到直线的距离公式和基本不等式求最值,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.长方体ABCD-A1B1C1D1中,若$\overrightarrow{AB}$=3i,$\overrightarrow{AD}$=2j,$\overrightarrow{A{A}_{1}}$=5k,则$\overrightarrow{A{C}_{1}}$=(  )
A.$\overrightarrow{i}$+$\overrightarrow{j}$+$\overrightarrow{k}$B.$\frac{1}{3}$$\overrightarrow{i}$+$\frac{1}{2}$$\overrightarrow{j}$+$\frac{1}{5}$$\overrightarrow{k}$C.3$\overrightarrow{i}$+2$\overrightarrow{j}$+5$\overrightarrow{k}$D.3$\overrightarrow{i}$+2$\overrightarrow{j}$-5$\overrightarrow{k}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.李庄村电费收取有以下两种方案供农户选择:
方案一:每户每月收管理费2元,月用电不超过30度每度0.5元,超过30度时,超过部分按每度0.6元.
方案二:不收管理费,每度0.58元.
(1)求方案一收费L(x)元与用电量x(度)间的函数关系;
(2)李刚家九月份按方案一交费35元,问李刚家该月用电多少度?
(3)李刚家月用电量在什么范围时,选择方案一比选择方案二更好?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知定义在R上的函数f(x)=$\frac{a-{2}^{x}}{1+{2}^{x}}$的图象关于原点对称.
(1)求a的值;
(2)判断f(x)的单调性,并用单调性定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)已知4x+x-1=6,求$8{x^{\frac{3}{2}}}+{x^{-\frac{3}{2}}}$的值;
(2)若log32=m,log53=n,用m,n表示log415.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.对任意的两个实数a,b,定义$min(a,b)=\left\{\begin{array}{l}a,a<b\\ b,a≥b\end{array}\right.$,若f(x)=4-x2,g(x)=3x,则min(f(x),g(x))的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}满足2an+1=an+an+2+k(n∈N*,k∈R),且a1=2,a3+a5=-4.
(1)若k=0,求数列{an}的前n项和Sn
(2)若a4=-1,求数列{an}的通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,在正方体ABCD-A1B1C1D1中,点O为线段BD的中点.设点P在线段B1C1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是(  )
A.$[\frac{{\sqrt{6}}}{3},1]$B.$[\frac{{\sqrt{2}}}{3},1]$C.$[\frac{{\sqrt{2}}}{3},\frac{{2\sqrt{2}}}{3}]$D.$[\frac{{\sqrt{6}}}{3},\frac{{2\sqrt{2}}}{3}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合A={x|x2-3x+2<0},B={x|1<x<a}(a为实常数).
(Ⅰ)若a=$\frac{3}{2}$,求A∩B;  
(Ⅱ)若B⊆A,求实数a的取值范围.

查看答案和解析>>

同步练习册答案