精英家教网 > 高中数学 > 题目详情
8.设数列{an}满足an+1=$\frac{4{a}_{n}-1}{{a}_{n}+2}$,当首项a1=$\frac{7}{10}$时,此数列只有10项.

分析 把已知数列递推式变形,得到${a}_{n}=\frac{9}{4-{a}_{n+1}}-2$.由数列{an}只有10项,可得a10=-2.依次由变形后的递推式求得首项得答案.

解答 解:由an+1=$\frac{4{a}_{n}-1}{{a}_{n}+2}$=$\frac{4({a}_{n}+2)-9}{{a}_{n}+2}$=$4-\frac{9}{{a}_{n}+2}$,得
${a}_{n}=\frac{9}{4-{a}_{n+1}}-2$.
若数列{an}只有10项,则a10=-2.
∴${a}_{9}=\frac{9}{6}-2=-\frac{1}{2}$,${a}_{8}=\frac{9}{\frac{9}{2}}-2=0$,${a}_{7}=\frac{9}{4}-2=\frac{1}{4}$,
${a}_{6}=\frac{9}{\frac{15}{4}}-2=\frac{2}{5}$,${a}_{5}=\frac{9}{\frac{18}{5}}-2=\frac{1}{2}$,${a}_{4}=\frac{9}{\frac{7}{2}}-2=\frac{4}{7}$,
${a}_{3}=\frac{9}{\frac{24}{7}}-2=\frac{5}{8}$,${a}_{2}=\frac{9}{\frac{27}{8}}-2=\frac{2}{3}$,${a}_{1}=\frac{9}{\frac{10}{3}}-2=\frac{7}{10}$.
故答案为:$\frac{7}{10}$.

点评 本题考查数列递推式,考查计算能力,对题意的理解是解答该题的关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,过点P(1,1)作一直线交椭圆于点A、B,若点P是AB的中点,求弦长|AB|=$\frac{5\sqrt{105}}{21}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,三棱柱ABC-A′B′C′,BC=1,BC′=1,CC′=$\sqrt{2}$,面ABC⊥面BCC′B′,E、F分别为棱AB、CC′的中点.
(Ⅰ)求证:EF∥面A′BC′;
(Ⅱ)求证:面ABC′⊥面A′B′C′.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-3,4),$\overrightarrow{c}$=$\overrightarrow{a}$+λ$\overrightarrow{b}$(λ∈R),当λ为何值时,$\overrightarrow{c}$与$\overrightarrow{a}$的夹角为45°?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.将函数y=cosx图象上所有的点向右平移$\frac{5π}{6}$个单位,可得到函数y=sin(x-$\frac{π}{3}$)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数f(x)=$\frac{x}{{x}^{2}+1}$+1的值域为[a,b],则a+b=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.椭圆$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{4}$=1的离心率是(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在平行六面体ABCD-A′B′C′D′中,若$\overrightarrow{AC′}$=x$\overrightarrow{AB}$+$\frac{y}{2}$$\overrightarrow{BC}$+$\frac{z}{3}$$\overrightarrow{CC′}$,则x+y+z=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知f(x),g(x),h(x)为R上的函数,其中函数f(x)为奇函数,函数g(x)为偶函数,则(  )
A.函数h(g(x))为偶函数B.函数h(f(x))为奇函数C.函数g(h(x))为偶函数D.函数f(h(x))为奇函数

查看答案和解析>>

同步练习册答案