精英家教网 > 高中数学 > 题目详情
如图,三棱锥V-ABC中,VA=VB=AC=BC=2,AB=2
3
,VC=1.求二面角V-AB-C的大小.
分析:取AB的中点为D,连接VD,CD,则∠VDC是二面角V-AB-C的平面角,从而可得结论.
解答:解:取AB的中点为D,连接VD,CD.
∵VA=VB,∴AB⊥VD;
同理AB⊥CD.
所以∠VDC是二面角V-AB-C的平面角.           …(7分)
由题设可知VD=CD=1,即∠VDC=60°.
故二面角V-AB-C的大小为60°.…(12分)
点评:本题考查面面角,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、如图,三棱锥V-ABC中,VA⊥底面ABC,∠ABC=90°.
(1)求证:V、A、B、C四点在同一球面上;
(2)过球心作一平面与底面内直线AB垂直,求证:此平面截三棱锥所得的截面是矩形.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱锥V-ABC中,VA=VB=AC=BC=2,AB=2
3
,VC=1.
(Ⅰ)证明:AB⊥VC;
(Ⅱ)求三棱锥V-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱锥V-ABC中,VO⊥平面ABC,O∈CD,VA=VB,AD=BD,则下列结论中不一定成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱锥V-ABC中,AB=AC=VB=VC=
5
,BC=2,VA=2
2

(1)求证:面VBC⊥面ABC;
(2)求直线VC与平面ABC所成角的余弦值.

查看答案和解析>>

同步练习册答案