精英家教网 > 高中数学 > 题目详情

【题目】把离心率的双曲线称为黄金双曲线.给出以下几个说法:

双曲线是黄金双曲线;

若双曲线上一点到两条渐近线的距离积等于,则该双曲线是黄金双曲线;

为左右焦点,为左右顶点,,则该双曲线是黄金双曲线;

.若直线经过右焦点交双曲线于两点,且,则该双曲线是黄金双曲线;

其中正确命题的序号为 .

【答案】②③④

【解析】

试题分析:由双曲线,可得离心率,故该双曲线是黄金双曲线;

由题意得

因此该双曲线是黄金双曲线;

如图,

,化为,由可知该双曲线是黄金双曲线;

如图,∵∠MON=90°

MNx轴,|MF2|=,且MOF2是等腰直角三角形.

,即,由可知:该双曲线是黄金双曲线.

综上可知:②③④所给出的双曲线都是黄金双曲线

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线C的标准方程是

)求它的焦点坐标和准线方程;

)直线过已知抛物线C的焦点且倾斜角为45°,且与抛物线的交点为A、B,求线段AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}的公比q>1,且满足a2+a3+a4=28,且a3+2a2,a4的等差中项.

(1)求数列{an}的通项公式;

(2)bn=log,Sn=b1+b2+bn求使成立的正整数n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线

(1)的方程为普通方程,并说明它们分别表示什么曲线;

(2)上的点P对应的参数为,Q为上的动点,求PQ的中点M到直线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆方程+=1ab0,椭圆上一点到两焦点的距离和为4,过焦点且垂直于x轴的直线交椭圆于AB两点,AB=2

1求椭圆方程;

2MN是椭圆C上的点,且直线OMON的斜率之积为,是否存在动点Px0y0,若=+2,有x02+2y02为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知过点的直线的参数方程是为参数.以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程式为.

求直线的普通方程和曲线的直角坐标方程;

若直线与曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等比数列{an}的公比为q其前n项的积为Tn并且满足条件a1>1a49a50-1>0(a49-1)(a50-1)<0.给出下列结论:

0<q<1;a1a99-1<0;T49的值是Tn中最大的;④使Tn>1成立的最大自然数n等于98.

其中所有正确结论的序号是____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为且满足,数列中,对任意正整数

(1)求数列的通项公式;

(2)是否存在实数,使得数列是等比数列?若存在,请求出实数及公比的值,若不存在,请说明理由;

(3)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

如图,某城市有一块半径为40的半圆形(以为圆心,为直径)绿化区域,现计划对其进行改建,在的延长线上取点,使,在半圆上选定一点,改建后的绿化区域由扇形区域和三角形区域组成,其面积为,设

(1)写出关于的函数关系式,并指出的取值范围;

(2)试问多大时,改建后的绿化区域面积最大.

查看答案和解析>>

同步练习册答案