【题目】把离心率的双曲线称为黄金双曲线.给出以下几个说法:
①双曲线是黄金双曲线;
②若双曲线上一点到两条渐近线的距离积等于,则该双曲线是黄金双曲线;
③若为左右焦点,为左右顶点,且,则该双曲线是黄金双曲线;
④.若直线经过右焦点交双曲线于两点,且,,则该双曲线是黄金双曲线;
其中正确命题的序号为 .
科目:高中数学 来源: 题型:
【题目】已知抛物线C的标准方程是
(Ⅰ)求它的焦点坐标和准线方程;
(Ⅱ)直线过已知抛物线C的焦点且倾斜角为45°,且与抛物线的交点为A、B,求线段AB的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}的公比q>1,且满足a2+a3+a4=28,且a3+2是a2,a4的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=log,Sn=b1+b2+…+bn,求使成立的正整数n的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线
(1)化的方程为普通方程,并说明它们分别表示什么曲线;
(2)若上的点P对应的参数为,Q为上的动点,求PQ的中点M到直线
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆方程+=1(a>b>0),椭圆上一点到两焦点的距离和为4,过焦点且垂直于x轴的直线交椭圆于A,B两点,AB=2.
(1)求椭圆方程;
(2)若M,N是椭圆C上的点,且直线OM与ON的斜率之积为﹣,是否存在动点P(x0,y0),若=+2,有x02+2y02为定值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知过点的直线的参数方程是(为参数).以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程式为.
(Ⅰ)求直线的普通方程和曲线的直角坐标方程;
(Ⅱ)若直线与曲线交于两点,且,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等比数列{an}的公比为q,其前n项的积为Tn,并且满足条件a1>1,a49a50-1>0,(a49-1)(a50-1)<0.给出下列结论:
①0<q<1;②a1a99-1<0;③T49的值是Tn中最大的;④使Tn>1成立的最大自然数n等于98.
其中所有正确结论的序号是____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为且满足,数列中,对任意正整数
(1)求数列的通项公式;
(2)是否存在实数,使得数列是等比数列?若存在,请求出实数及公比的值,若不存在,请说明理由;
(3)求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
如图,某城市有一块半径为40的半圆形(以为圆心,为直径)绿化区域,现计划对其进行改建,在的延长线上取点,使,在半圆上选定一点,改建后的绿化区域由扇形区域和三角形区域组成,其面积为,设
(1)写出关于的函数关系式,并指出的取值范围;
(2)试问多大时,改建后的绿化区域面积最大.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com