精英家教网 > 高中数学 > 题目详情
11.椭圆上的点A(-3,0)关于直线y=x和y=-x的对称点分别为椭圆的焦点F1和F2,P为椭圆上任意一点,则|$\overrightarrow{P{F}_{1}}$|•|$\overrightarrow{P{F}_{2}}$|的最大值为18.

分析 由对称性得到椭圆焦点坐标,可知椭圆是焦点在y轴上的椭圆,求出离心率,代入焦半径公式,可得|$\overrightarrow{P{F}_{1}}$|•|$\overrightarrow{P{F}_{2}}$|=$18-\frac{1}{2}{{y}_{0}}^{2}$,结合P点纵坐标的范围得答案.

解答 解:点A(-3,0)关于直线y=x和y=-x的对称点分别为(0,-3),(0,3),
即F1(0,-3),F2(0,3),
∴b=c=3,则a2=b2+c2=18,a=$3\sqrt{2}$.
∴椭圆方程为$\frac{{y}^{2}}{18}+\frac{{x}^{2}}{9}=1$.
设P(x0,y0),则-3≤y0≤3.
∴|$\overrightarrow{P{F}_{1}}$|=a+ey0=3$\sqrt{2}+\frac{\sqrt{2}}{2}{y}_{0}$,|$\overrightarrow{P{F}_{2}}$|=a-ey0=$3\sqrt{2}-\frac{\sqrt{2}}{2}{y}_{0}$.
∴|$\overrightarrow{P{F}_{1}}$|•|$\overrightarrow{P{F}_{2}}$|=(3$\sqrt{2}+\frac{\sqrt{2}}{2}{y}_{0}$)($3\sqrt{2}-\frac{\sqrt{2}}{2}{y}_{0}$)=$18-\frac{1}{2}{{y}_{0}}^{2}$,
当y0=0时,|$\overrightarrow{P{F}_{1}}$|•|$\overrightarrow{P{F}_{2}}$|有最大值为18.
故答案为:18.

点评 本题考查椭圆的简单性质,训练了椭圆焦半径公式的应用,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知函数$f(x)=\left\{\begin{array}{l}(3a-1)x+4a,x<1\\-{x^2}+2ax+1,x≥1\end{array}\right.$是R上的减函数,则实数a的取值范围是(  )
A.(-∞,1]B.$[{\frac{1}{5},\frac{1}{3}})$C.$({-∞,\frac{1}{3}})$D.$[{\frac{1}{5},1}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=Asin(ωx+φ).
(1)若该函数的部分图象如图所示,其中A>0,ω>0,0<φ<π,则该函数f(x)的解析式为f(x)=2sin(2x+$\frac{2π}{3}$)
(2)若A=2,ω=2,φ=0,则该函数图象在区间[-$\frac{π}{4}$,$\frac{3π}{4}$]上与直线y=-2围成封闭图形面积为π.
(3)若A=2,ω>2,φ=$\frac{π}{3}$,且该函数图象整体在区间[0,$\frac{π}{2}$]上有且只有4条对称轴,则ω取值集合为6≤ω<8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{3}}{3}$,MN是经过椭圆左焦点F的任一弦,AB是经过椭圆中心O且平行于MN的弦.
(Ⅰ)若$2\overrightarrow{MF}=5\overrightarrow{FN}$,求弦MN所在直线的斜率;
(Ⅱ)证明:|AB|是|MN|和椭圆长轴2a的等比中项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求函数y=$\frac{tanx}{1+ta{n}^{2}x}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=lg(x2-2ax+4)的定义域为R,则实数a的取值范围是(  )
A.(-∞,-2]B.[2,+∞)C.[-2,2]D.(-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{4}$=1(a>2)的离心率为$\frac{\sqrt{3}}{3}$,斜率为k的直线l过点E(0,1)且与椭圆交于C,D两点.
(1)求椭圆的方程;
(2)若直线l与x轴相交于点G,且$\overrightarrow{GC}$=$\overrightarrow{DE}$,求k的值;
(3)设点A为椭圆的下顶点,kAC,kAD分别为直线AC,AD的斜率,证明:对任意的k,恒有kAC•kAD=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求函数y=-tan3x+4tanx+1,x∈[-$\frac{π}{4}$,$\frac{π}{4}$]值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直角坐标系xOy中,直线l的直角坐标方程为x-y+4=0,曲线C的参数方程为$\left\{\begin{array}{l}x=\sqrt{3}cosα\\ y=sinα\end{array}\right.(α$为参数)
(Ⅰ)已知在极坐标系(与直角坐标系xOy取相同长度单位,且以原点为极点,以x轴正半轴为极轴)中,点P的极坐标为($\sqrt{2}$,$\frac{π}{4}$),求点P关于直线l的对称点P0的直角坐标;
(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.

查看答案和解析>>

同步练习册答案