精英家教网 > 高中数学 > 题目详情
9.已知X~N(0,σ2),且P(-2≤X≤0)=0.4,则P(X>2)=0.1.

分析 本题考查正态分布曲线的性质,随机变量ξ服从正态分布N(0,σ2),由此知曲线的对称轴为Y轴,可得P(0≤X≤2)=0.4,即可得出结论.

解答 解:∵随机变量ξ服从正态分布N(0,σ2),且P(-2≤X≤0)=0.4,
∴P(0≤X≤2)=0.4
∴P(X>2)=0.5-0.4=0.1
故答案为:0.1.

点评 本题考查正态分布曲线所表示的意义,解题的关键是正确正态分布曲线所表示的意义,由曲线的对称性求出概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知数列{bn}满足b1=1,b2=5,bn+1=5bn-6bn-1,若数列{an}满足a1=1,an=bn($\frac{1}{{b}_{1}}$+$\frac{1}{{b}_{2}}$+…+$\frac{1}{{b}_{n-1}}$)(n≥2,n∈N*).
(1)求证:数列{bn+1-3bn}为等比数列,并求{bn}的通项公式;
(2)求证:(1+$\frac{1}{{a}_{1}}$)(1+$\frac{1}{{a}_{2}}$)(1+$\frac{1}{{a}_{3}}$)…(1+$\frac{1}{{a}_{n}}$)<3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知以点P为圆心的圆经过点A(-1,1)和B(2,0),线段AB的垂直平分线交该圆于C、D两点,且|CD|=10
(Ⅰ)求直线CD的方程;
(Ⅱ)求圆P的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知数列{an}的前n项和为Sn=n(2n+1),则a10=39.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=cos(3x+$\frac{π}{12}$),则f′($\frac{π}{12}$)等于(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{3\sqrt{3}}{2}$C.-$\frac{\sqrt{3}}{2}$D.-$\frac{3\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=$\frac{1}{\sqrt{lo{g}_{\frac{1}{2}}(2x-3)}}$的定义域为(  )
A.($\frac{3}{2}$,+∞)B.(2,+∞)C.(0,$\frac{3}{2}$)D.($\frac{3}{2}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若复数z=a-2+ai(a∈R)为纯虚数,则|a+i|=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.从某校高三年级抽查100名男同学,如果以身高达到170cm作为达标的标准,对抽取的100名男同学,得到以下列联表:
  身高达标 身高不达标 总计
 积极参加体育锻炼 40  75
 不
积极参加体育锻炼
 10  
 总计   100
(1)请完成上表;
(2)能否在犯错误的概率不超过0.15的前提下认为体育锻炼与身高达标有关系(K2的观察值精确到0.001)?
参考:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)^{2}}$
 P(k2≥k0 0.15 0.10
 k0 2.072 2.706

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在数列{an]中a1=1,an+1=2an-n+2,n∈N*.记bn=an-n+1.
(Ⅰ)计算b1,b2,b3,b4,并写出数列{bn}的通项bn(不需要说明理由);
(Ⅱ)利用(Ⅰ)的结论,求数列{an}的通项an及前n项和Sn

查看答案和解析>>

同步练习册答案