精英家教网 > 高中数学 > 题目详情
(本题满分10分)如图,在四棱锥中,底面是边长为2的正方形,且=,的中点. 求:
(Ⅰ) 异面直线CM与PD所成的角的余弦值;
(Ⅱ)直线与平面所成角的正弦值.
20. 解:如图,以为一组基底建立空间直角坐标系,

由题可知,
( I )
设直线与直线所成角为,则

( II )
设平面的法向量为
因为,则
,所以
设直线与平面所成的角为
所以
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分9分)
如图所示的多面体中,已知直角梯形和矩形所在的平面互相垂直,,,,.        
(Ⅰ)证明:平面
(Ⅱ)设二面角的平面角为,求的值;
(Ⅲ)的中点,在上是否存在一点,使得∥平面?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

体积为的球的内接正方体的棱长为_____________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分) 如图所示,在等腰梯形中,中点.将沿折起至,使得平面平面分别为的中点.
(Ⅰ) 求证:;
(Ⅱ) 求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共14分)如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC=2,,CC1=4,M是棱CC1上一点.
(Ⅰ)求证:BC⊥AM;
(Ⅱ)若M,N分别是CC1,AB的中点,求证:CN //平面AB1M;
(Ⅲ)若,求二面角A-MB1-C的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,四边形为矩形,平面,平面于点,且点上.
(Ⅰ)求证:
(Ⅱ)求四棱锥的体积;
(Ⅲ)设点在线段上,且
试在线段上确定一点,使得平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

长方体ABCD—ABC1D1中,,则点到直线AC的距离是
A.3B.C.D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

底面是正方形的四棱锥ABCDE中,AE⊥底面BCDE,且AECDGH分别是BEED的中点,则GH到平面ABD的距离是______

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

.(本小题满分14分)
如图所示,PA⊥平面ABC,△ABC中BC⊥AC,
(1)求证:BC平面PAC;
(2)求证:平面PBC平面PAC

查看答案和解析>>

同步练习册答案