精英家教网 > 高中数学 > 题目详情
6.若三点 A(-2,12),B(1,3),C(m,-6)共线,则m的值为4.

分析 由三点共线的性质可得AB和AC的斜率相等,由$\frac{3-12}{1+2}$=$\frac{-6-12}{m+2}$,求得m 的值.

解答 解:由题意可得 KAB=KAC,∴$\frac{3-12}{1+2}$=$\frac{-6-12}{m+2}$,∴m=4,
故答案为4.

点评 本题考查三点共线的性质,当A、B、C三点共线时,AB和AC的斜率相等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.在《九章算术》方田章圆田术(刘徽注)中指出:“割之弥细,所失弥少.割之又割,以至不能割,则与圆周合体而无所失矣.”注述中所用的割圆术是一种无限与有限的转化过程,比如在$\sqrt{2+\sqrt{2+\sqrt{2+…}}}$中“…”即代表无限次重复,但原式却是个定值x,这可以通过方程$\sqrt{2+x}$=x确定出来x=2,类似地不难得到$\frac{1}{1+\frac{1}{1+…}}$=$\frac{\sqrt{5}+1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,四棱锥P-ABCD中,底面ABCD是矩形,PA=AD,PA⊥平面ABCD,M、N分别是AB、PC的中点.
(1)求证:MN∥平面PAD;
(2)求证:平面PMC⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=$\frac{\frac{1}{6}•(-1)^{1+{C}_{2x}^{x}}•{A}_{x+2}^{5}}{1+{C}_{3}^{2}+{C}_{4}^{2}+…+{C}_{x-1}^{2}}$ (x∈N)的最大值是-20.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知数列{an}为等比数列,Sn是它的前n项和.设Tn=S1+S2+…+Sn,若a2•a3=2a1,且a4与2a7的等差中项为$\frac{5}{4}$,则T6=160.5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若函数f(x)在其定义域上既是减函数又是奇函数,则函数f(x)的解析式可以是(  )
A.$f(x)={log_2}(\sqrt{{x^2}+1}-x)$B.$f(x)=\frac{1}{x}$C.f(x)=x2-x3D.f(x)=sinx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,正方形ABCD中,M,N分别是BC,CD的中点,若$\overrightarrow{AC}$=λ$\overrightarrow{AM}$+μ$\overrightarrow{BN}$,则λ-3μ=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.将6位志愿者分成4组,每组至少1人,至多2人分赴第五届亚欧博览会的四个不同展区服务,不同的分配方案有1080种(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.从2013名学生中选取50名学生参加数学竞赛,若采用下面的方法选取:先用简单随机抽样从2013人中剔除13人,剩下的2000人再按系统抽样的方法抽取50人,则在2013人中,每人入选的机会(  )
A.不全相等B.均不相等
C.都相等,且为$\frac{1}{40}$D.都相等,且为 $\frac{50}{2013}$

查看答案和解析>>

同步练习册答案