精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的中心在原点,焦点在坐标轴上,且经过.

(Ⅰ)求椭圆的标准方程和离心率;

(Ⅱ)四边形的四个顶点都在椭圆上,且对角线过原点,若,求证:四边形的面积为定值,并求出此定值.

【答案】(Ⅰ)标准方程,离心率(Ⅱ)详见解析

【解析】

(Ⅰ)先设椭圆方程,再由题意,列方程组求解即可;

(Ⅱ)先设的方程为,联立直线与曲线方程,由根与系数关系,结合题意表示出,即可求出的关系式,进而由面积公式可求出结果.

(I)设椭圆的方程为,则

所以椭圆的标准方程 ,所以,离心率

(Ⅱ)证明:不妨设点位于轴的上方,则直线的斜率存在,

的方程为.

联立,得

. ①

,得 . ②

由①、②,得. ③

设原点到直线的距离为

由③、④,得,故四边形的面积为定值,且定值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数上存在导函数,若,且,则不等式的解集为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如表提供了工厂技术改造后某种型号设备的使用年限和所支出的维修费(万元)的几组对照数据:

(年)

2

3

4

5

6

(万元)

1

2.5

3

4

4.5

参考公式:.

(1)若知道呈线性相关关系,请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(2)已知该工厂技术改造前该型号设备使用10年的维修费用为9万元,试根据(1)求出的线性回归方程,预测该型号设备技术改造后,使用10年的维修费用能否比技术改造前降低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的离心率为,左、右顶点分别为AB,点M是椭圆C上异于AB的一点,直线AMy轴交于点P

(Ⅰ)若点P在椭圆C的内部,求直线AM的斜率的取值范围;

(Ⅱ)设椭圆C的右焦点为F,点Qy轴上,且∠PFQ=90°,求证:AQBM

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在各项均为正数的等比数列{an}中,,且a4+a5=6a3

(Ⅰ)求数列{an}的通项公式;

(Ⅱ)设数列{log2an}的前n项和为Sn,求Sn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,求处的切线方程;

(2)若对于任意的正数恒成立,求实数的值;

(3)若函数存在两个极值点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某幼儿园雏鹰班的生活老师统计2018年上半年每个月的20日的昼夜温差和患感冒的小朋友人数(/人)的数据如下:

温差

患感冒人数

8

11

14

20

23

26

其中.

(Ⅰ)请用相关系数加以说明是否可用线性回归模型拟合的关系;

(Ⅱ)建立关于的回归方程(精确到),预测当昼夜温差升高时患感冒的小朋友的人数会有什么变化?(人数精确到整数)

参考数据:.参考公式:相关系数:,回归直线方程是 ,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对给定的dN*,记由数列构成的集合

1)若数列{an}∈Ω(2),写出a3的所有可能取值;

2)对于集合Ω(d),若d≥2.求证:存在整数k,使得对Ω(d)中的任意数列{an},整数k不是数列{an}中的项;

3)已知数列{an}{bn}∈Ω(d),记{an}{bn}的前n项和分别为AnBn.若|an+1|≤|bn+1|,求证:AnBn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产了一种新产品,在推广期邀请了100位客户试用该产品,每人一台.试用一个月之后进行回访,由客户先对产品性能作出“满意”或“不满意”的评价,再让客户决定是否购买该试用产品(不购买则可以免费退货,购买则仅需付成本价).经统计,决定退货的客户人数是总人数的一半,“对性能满意”的客户比“对性能不满意”的客户多10人,“对性能不满意”的客户中恰有选择了退货.

(1)请完成下面的列联表,并判断是否有的把握认为“客户购买产品与对产品性能满意之间有关”.

对性能满意

对性能不满意

合计

购买产品

不购买产品

合计

(2)企业为了改进产品性能,现从“对性能不满意”的客户中按是否购买产品进行分层抽样,随机抽取6位客户进行座谈.座谈后安排了抽奖环节,共有6张奖券,其中一张印有900元字样,两张印有600元字样,三张印有300元字样,抽到奖券可获得相应奖金.6位客户每人随机抽取一张奖券(不放回),设6位客户中购买产品的客户人均所得奖金为元,求的分布列和数学期望.

附:,其中

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

同步练习册答案