精英家教网 > 高中数学 > 题目详情
6.边长为2的正方体挖去一个几何体后的三视图如图所示,则剩余部分的体积是(  )
A.8-$\frac{2π}{3}$B.8-$\frac{π}{3}$C.8-2πD.$\frac{2π}{3}$

分析 由已知中的三视图,可得该几何体是一个正方体挖去一个圆锥所得的组合体,分别计算正方体和圆锥的体积,相减可得答案.

解答 解:由已知中的三视图,可得该几何体是一个正方体挖去一个圆锥所得的组合体,
正方体的体积为:2×2×2=8,
圆锥的体积为:$\frac{1}{3}$×π×2=$\frac{2π}{3}$,
故组合体的体积V=8-$\frac{2π}{3}$.
故选:A

点评 本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知某几何体的俯视图是如图所示的边长为1的正方形,主视图与左视图是边长为1的正三角形,则其全面积是(  )
A.2B.3C.$1+\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.用大小和形状完全相同的小正方体木块搭成一个几何体,使得它的主视图和俯视图如图所示,则搭成这样的一个几何体至少需要小正方体木块的个数为(  )
A.22个B.19个C.16个D.13个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.双曲线x2-y2=1右支上一点P(a,b)到直线l:y=x的距离d=$\sqrt{2}$.则a+b=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.$\frac{1}{2}$或-$\frac{1}{2}$D.2或-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若函数f(x)=$\sqrt{2}sin\frac{x}{2}cos\frac{x}{2}-\sqrt{2}{sin^2}\frac{x}{2}$,则函数f(x)的最小正周期为2π;函数f(x)在区间[-π,0]上的最小值是-1-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.f(x)=log3x•log3(3x)的值域为[-$\frac{1}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设x,y,向量$\overrightarrow a=(x,1),\overrightarrow b=(1,y),\overrightarrow c=(2,-4)$,且$\overrightarrow a⊥\overrightarrow c$,$\overrightarrow b∥\overrightarrow c$,则$|{\overrightarrow a+\overrightarrow b}$|=$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设变量x,y满足约束条件$\left\{\begin{array}{l}{x>0}\\{y>0}\\{x+2y-4<0}\\{x+2y-2>0}\end{array}\right.$,则目标函数z=x2+y2的取值范围是($\frac{4}{5}$,16).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某几何体的三视图如图所示,则该几何体的体积可以是(  )
A.$48+\frac{4}{3}π$B.48+2πC.$48+\frac{8}{3}π$D.48+3π

查看答案和解析>>

同步练习册答案