精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左、右焦点分别为,离心率,过且与轴垂直的直线与椭圆在第一象限内的交点为,且.

(1)求椭圆的方程;

(2)过点的直线交椭圆两点,当时,求直线的方程.

【答案】(1) .(2) .

【解析】试题分析:(1)由题意得 ,∴.①∵,∴.②联立①②得a,b,c即得椭圆的方程(2)设直线方程为: 点坐标为 点坐标为.联立根据韦达定理由弦长公式得 ,又点到直线的距离 解得k值,即得直线的方程.

试题解析:

(1)设 ,则

,∴.

,∴.②

联立①②得 .

椭圆方程为.

(2)显然直线斜率存在,设直线方程为: 点坐标为 点坐标为.

联立方程组

由弦长公式得

到直线的距离

解得.

的方程为: .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面

(1)求直线与平面所成角的正弦值;

(2)若动点在底面边界及内部,二面角的余弦值为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,左、右焦点分别为,且与抛物线的焦点重合.

(1)求椭圆的标准方程;

(2)若过的直线交椭圆于两点,过的直线交椭圆于两点,且,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程是 (为参数),以原点为极点, 轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.

(Ⅰ)求曲线的普通方程与直线的直角坐标方程;

(Ⅱ)已知直线与曲线交于 两点,与轴交于点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,直三棱柱中, ,点 分别是的中点.

(Ⅰ)求证: 平面

(Ⅱ)若二面角的大小为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信是当前主要的社交应用之一,有着几亿用户,覆盖范围广,及时快捷,作为移动支付的重要形式,微信支付成为人们支付的重要方式和手段。某公司为了解人们对“微信支付”认可度,对年龄段的人群随机抽取人进行了一次“你是否喜欢微信支付”的问卷调查,根据调查结果得到如下统计表和各年龄段人数频率分布直方图:

组号

分组

喜欢微信支付的人数

喜欢微信支付的人数

占本组的频率

第一组

第二组

第三组

第四组

第五组

第六组

(1)补全频率分布直方图,并求 的值;

(2)在第四、五、六组“喜欢微信支付”的人中,用分层抽样的方法抽取人参加“微信支付日鼓励金活动,求第四、五、六组应分别抽取的人数;

(3)在(2)中抽取的人中随机选派人做采访嘉宾,求所选派的人没有第四组人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在区间上的函数.

(1)求函数的单调区间;

(2)若不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某餐厅通过查阅了最近5次食品交易会参会人数 (万人)与餐厅所用原材料数量 (袋),得到如下统计表:

第一次

第二次

第三次

第四次

第五次

参会人数 (万人)

13

9

8

10

12

原材料 (袋)

32

23

18

24

28

(1)根据所给5组数据,求出关于的线性回归方程.

(2)已知购买原材料的费用 (元)与数量 (袋)的关系为

投入使用的每袋原材料相应的销售收入为700元,多余的原材料只能无偿返还,据悉本次交易大会大约有15万人参加,根据(1)中求出的线性回归方程,预测餐厅应购买多少袋原材料,才能获得最大利润,最大利润是多少?(注:利润销售收入原材料费用).

参考公式: .

参考数据: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域为,若满足条件:存在,使上的值域为,则称为“倍缩函数”.若函数为“倍缩函数”,则实数的取值范围是

A. (﹣∞,ln2﹣1) B. (﹣∞,ln2﹣1]

C. (1﹣ln2,+∞) D. [1﹣ln2,+∞)

查看答案和解析>>

同步练习册答案