精英家教网 > 高中数学 > 题目详情
7.已知数列{an}的前n项和为Sn,且满足a1=1,2Sn=(n+1)an,数列{bn}中,bn=2${\;}^{{a}_{n}+1}$.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)求数列{$\frac{1}{{a}_{n}•(lo{g}_{2}{b}_{n})}$}的前n项和Tn

分析 (Ⅰ)由题意可知:两式相减2an=(n+1)an-nan-1,则$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n}{n-1}$,采用“累乘法”即可求得数列{an},bn=2${\;}^{{a}_{n}+1}$=2n+1
(Ⅱ)由(Ⅰ)可知:$\frac{1}{{a}_{n}•(lo{g}_{2}{b}_{n})}$=$\frac{1}{n}$-$\frac{1}{n+1}$,即可求得Tn

解答 解:(Ⅰ)当n≥2时,由2Sn=(n+1)an,则2Sn-1=nan-1
两式相减得:2an=(n+1)an-nan-1,整理得:$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n}{n-1}$,
由an=$\frac{{a}_{n}}{{a}_{n-1}}$•$\frac{{a}_{n-1}}{{a}_{n-2}}$•…•$\frac{{a}_{2}}{{a}_{1}}$=$\frac{n}{n-1}$•$\frac{n-1}{n-2}$•…•$\frac{2}{1}$•1=n,(n≥2),
当n=1时,a1=1,
∴an=n,(n∈N*);
由bn=2${\;}^{{a}_{n}+1}$=2n+1
∴{bn}的通项公式bn=2n+1
(Ⅱ)由(Ⅰ),$\frac{1}{{a}_{n}•(lo{g}_{2}{b}_{n})}$=$\frac{1}{n(lo{g}_{2}{2}^{n+1})}$,
=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
由数列{$\frac{1}{{a}_{n}•(lo{g}_{2}{b}_{n})}$}的前n项和Tn,Tn=(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+…+($\frac{1}{n}$-$\frac{1}{n+1}$),
=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$,
=1-$\frac{1}{n+1}$,
=$\frac{n}{n+1}$.
数列{$\frac{1}{{a}_{n}•(lo{g}_{2}{b}_{n})}$}的前n项和Tn=$\frac{n}{n+1}$.

点评 本题考查数列的前n项和求法,考查“裂项法”,“累乘法”,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知曲线C的参数方程为$\left\{\begin{array}{l}{x=3cosθ}\\{y=2sinθ}\end{array}$(θ为参数),在同一平面直角坐标系中,将曲线C上的点按坐标变换$\left\{{\begin{array}{l}{x'=\frac{1}{3}x}\\{y'=\frac{1}{2}y}\end{array}}$得到曲线C',以原点为极点,x轴的正半轴为极轴,建立极坐标系.
(1)写出曲线C与曲线C'的极坐标的方程; 
(2)若过点$A({2\sqrt{2},\frac{π}{4}})$(极坐标)且倾斜角为$\frac{π}{3}$的直线l与曲线C交于M,N两点,弦MN的中点为P,求$\frac{|AP|}{|AM|•|AN|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知一个直角三角形的两条直角边长分别是2,$2\sqrt{3}$;以这个直角三角形的斜边所在直线为旋转轴,其余两边旋转一周形成的面所围成的旋转体,求这个旋转体的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知α是第二象限角,且$|{cos\frac{α}{3}}|=-cos\frac{α}{3}$,则$\frac{α}{3}$是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,已知ABCD-A′B′C′D′为正方体,则下列结论错误的是(  )
A.平面ACB′∥平面A′C′DB.B′C⊥BD′
C.B′C⊥DC′D.BD′⊥平面A′C′D

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知定义域为[0,+∞)的函数f(x)满足f(x)=2f(x+2),当x∈[0,2)时,f(x)=-2x2+4x.设f(x)在[2n-2,2n)上的最大值为an(n∈N*),且数列{an}的前n项和为Sn,则Sn=4-$\frac{1}{{2}^{n-2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某四棱锥的三视图,则该四棱锥各个侧面中,最大的侧面面积为(  )
A.2B.$\sqrt{5}$C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=(x-2)ex,其中e是自然对数的底数.
(1)求函数f(x)的单调区间;
(2)当x∈[0,4]时,求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知F1,F2为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,以F1F2为直径的圆与双曲线右支的一个交点为P,PF1与双曲线相交于点Q,且|PQ|=2|QF1|,则该双曲线的离心率为 (  )
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

同步练习册答案