分析 (Ⅰ)由题意可知:两式相减2an=(n+1)an-nan-1,则$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n}{n-1}$,采用“累乘法”即可求得数列{an},bn=2${\;}^{{a}_{n}+1}$=2n+1;
(Ⅱ)由(Ⅰ)可知:$\frac{1}{{a}_{n}•(lo{g}_{2}{b}_{n})}$=$\frac{1}{n}$-$\frac{1}{n+1}$,即可求得Tn.
解答 解:(Ⅰ)当n≥2时,由2Sn=(n+1)an,则2Sn-1=nan-1,
两式相减得:2an=(n+1)an-nan-1,整理得:$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n}{n-1}$,
由an=$\frac{{a}_{n}}{{a}_{n-1}}$•$\frac{{a}_{n-1}}{{a}_{n-2}}$•…•$\frac{{a}_{2}}{{a}_{1}}$=$\frac{n}{n-1}$•$\frac{n-1}{n-2}$•…•$\frac{2}{1}$•1=n,(n≥2),
当n=1时,a1=1,
∴an=n,(n∈N*);
由bn=2${\;}^{{a}_{n}+1}$=2n+1.
∴{bn}的通项公式bn=2n+1;
(Ⅱ)由(Ⅰ),$\frac{1}{{a}_{n}•(lo{g}_{2}{b}_{n})}$=$\frac{1}{n(lo{g}_{2}{2}^{n+1})}$,
=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
由数列{$\frac{1}{{a}_{n}•(lo{g}_{2}{b}_{n})}$}的前n项和Tn,Tn=(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+…+($\frac{1}{n}$-$\frac{1}{n+1}$),
=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$,
=1-$\frac{1}{n+1}$,
=$\frac{n}{n+1}$.
数列{$\frac{1}{{a}_{n}•(lo{g}_{2}{b}_{n})}$}的前n项和Tn=$\frac{n}{n+1}$.
点评 本题考查数列的前n项和求法,考查“裂项法”,“累乘法”,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 第一象限角 | B. | 第二象限角 | C. | 第三象限角 | D. | 第四象限角 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 平面ACB′∥平面A′C′D | B. | B′C⊥BD′ | ||
C. | B′C⊥DC′ | D. | BD′⊥平面A′C′D |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | $\sqrt{5}$ | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{5}$ | B. | 2 | C. | $\sqrt{3}$ | D. | $\frac{\sqrt{5}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com