精英家教网 > 高中数学 > 题目详情
设函数f(x)、g(x)在R上可导,且导函数f′(x)>g′(x),则当a<x<b时,下列不等式:
(1)f(x)>g(x);
(2)f(x)<g(x);
(3)f(x)+g(b)<g(x)+f(b);
(4) f(x)+g(a)>g(x)+f(a).
正确的有    
【答案】分析:先根据f′(x)>g′(x)想到构造函数F(x)=f(x)-g(x),根据导数得到函数的单调性,从而得到F(a)、F(x)、F(b)的大小关系,最终可得到结论.
解答:解:令F(x)=f(x)-g(x),
则F'(x)=f'(x)-g'(x)>0,
∴函数F(x)在R上单调递增函数
而a<x<b
∴F(a)<F(x)即f(a)-g(a)<f(x)-g(x)
F(x)<F(b)即f(x)-g(x)<f(b)-g(b)
故答案为:(3)(4)
点评:本题主要考查了导数的几何意义,以及函数的构造,属于创新题,也是高考中常考的题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x),g(x)的定义域都是I,则g(x)>f(x)恒成立的充分必要条件是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数g(x)的图象经过坐标原点,且满足g(x+1)=g(x)+2x+1,设函数f(x)=m[g(x+1)-1]-lnx,其中m为常数且m≠0.
(1)求函数g(x)的解析式;
(2)当-2<m<0时,判断函数f(x)的单调性并且说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)、g(x)的定义域分别为F、G,且F⊆G,若对任意的x∈F,都有g(x)=f(x),则称g(x)为f(x)在G上的一个“延拓函数”.已知函数f(x)=(
12
)x(x≤0)
,若g(x)为f(x)在实数集R上的一个延拓函数,且g(x)是偶函数,则函数g(x)=
2|x|
2|x|

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x),g(x)在[a,b]上可导,且f'(x)>g'(x),则当a<x<b时有(  )

查看答案和解析>>

同步练习册答案