精英家教网 > 高中数学 > 题目详情
在直角三角形ABC中,CA=4,CB=2,M为斜边AB的中点,则
AB
MC
的值为(  )
A.1B.10C.
5
D.6
如图,由向量的运算法则可得
AB
=
CB
-
CA

∵M为斜边AB的中点,∴
MC
=-
CM
=-
1
2
CB
+
CA
),
AB
MC
=-
1
2
CB
-
CA
)•(
CB
+
CA

=-
1
2
CB
2
-
CA
2
)=-
1
2
(22-42)=6
故选D
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)设>0为常数,若上是增函数,求的取值范围;
(2)设集合若AB恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知
a
=(1,-1),
b
=(x+1,x)
,且
a
b
的夹角为45°,则x的值为(  )
A.0B.-1C.0或-1D.-1或1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆G:
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点为F1(-c,0),F2(c,0),M是椭圆上的一点,且满足
F1M
F2M
=0

(1)求离心率的取值范围;
(2)当离心率e取得最小值时,点N(0,3)到椭圆上的点的最远距离为5
2

①求此时椭圆G的方程;
②设斜率为k(k≠0)的直线L与椭圆G相交于不同的两点A、B,Q为AB的中点,问A、B两点能否关于过点P(0,-
3
3
)
、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若向量
a
=(4,2,-4),
b
=(1,-3,2)
,则2
a
•(
a
+2
b
)
=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知向量
a
=(cosx,4sinx-2),
b
=(8sinx,2sinx+1)
,x∈R,设函数f(x)=
a
b

(1)求函数f(x)的最大值;
(2)在△ABC中,A为锐角,角A,B,C的对边分别为a,b,c,f(A)=6,且△ABC的面积为3,b+c=2+3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

己知正方形ABCD的边长为1,点E是AB边上的动点.则
DE
CB
的值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知向量
a
=(sinx+cosx,2),
b
=(1,sinxcosx),设f(x)=
a
b
,x∈[0,
π
2
],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若向量
a
b
的夹角为60°,|
b
|=4,(
a
+2
b
).(
a
-3
b
)=-72
,则向量
a
的模为(  )
A.2B.4C.6D.12

查看答案和解析>>

同步练习册答案