分析 构造长方体,使得面上的对角线长分别为$\sqrt{13}$,$\sqrt{10}$,$\sqrt{5}$,则长方体的对角线长等于三棱锥S-ABC外接球的直径,即可求出三棱锥S-ABC外接球的表面积.
解答 解:∵三棱锥S-ABC中,$SA=CB=\sqrt{5}$,$SB=AC=\sqrt{10}$,$SC=AB=\sqrt{13}$,
∴构造长方体,使得面上的对角线长分别为$\sqrt{13}$,$\sqrt{10}$,$\sqrt{5}$,
则长方体的对角线长等于三棱锥S-ABC外接球的直径.
设长方体的棱长分别为x,y,z,则x2+y2=13,y2+z2=10,x2+z2=5,
∴x2+y2+z2=14
∴三棱锥S-ABC外接球的直径为$\sqrt{14}$,
∴三棱锥S-ABC外接球的表面积为4$π•(\frac{\sqrt{14}}{2})^{2}$=14π.
故答案为14π.
点评 本题考查球内接多面体,考查学生的计算能力,构造长方体,利用长方体的对角线长等于四面体外接球的直径是关键.
科目:高中数学 来源: 题型:选择题
A. | [-1,-$\frac{\sqrt{3}}{2}$)∪($\frac{\sqrt{3}}{2}$,1] | B. | (-1,-$\frac{\sqrt{3}}{2}$)∪($\frac{\sqrt{3}}{2}$,1) | C. | (-∞,-$\frac{\sqrt{3}}{2}$)∪($\frac{\sqrt{3}}{2}$,+∞) | D. | (-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 焦点在x轴上的椭圆 | B. | 焦点在y轴上的椭圆 | ||
C. | 焦点在x轴上的双曲线 | D. | 焦点在y轴上的双曲线 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 27 | B. | 33 | C. | 135 | D. | 165 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com