精英家教网 > 高中数学 > 题目详情

【题目】某大学为调查来自南方和北方的同龄大学生的身高差异,从2016级的年龄在18~19岁之间的大学生中随机抽取了来自南方和北方的大学生各10名,测量他们的身高,量出的身高如下(单位:cm):

南方:158,170,166,169,180,175,171,176,162,163.

北方:183,173,169,163,179,171,157,175,184,166.

(1)根据抽测结果,画出茎叶图,对来自南方和北方的大学生的身高作比较,写出统计结论.

(2)设抽测的10名南方大学生的平均身高为cm,将10名南方大学生的身高依次输入如图所示的程序框图进行运算,问输出的s大小为多少?并说明s的统计学意义。

【答案】(1)见解析部分;(2)s=42.6,s表示10位南方大学生身高的方差,是描述身高的离散程度的量.s值越小,表示身高越整齐,s值越大,表示身高越参差不齐.

【解析】

(1)根据题意画出茎叶图即可然后根据茎叶图写出统计结论.(2)由框图可得s表示样本数据的方差,然后根据题中数据求出s即可,然后说明它的统计学意义

(1)由题意画出茎叶图如图所示.

统计结论(给出下述四个结论供参考):

北方大学生的平均身高大于南方大学生的平均身高;

南方大学生的身高比北方大学生的身高更整齐;

南方大学生的身高的中位数为169.5 cm,北方大学生的身高的中位数是172 cm;

南方大学生的身高基本上是对称的,而且大多数集中在均值附近,北方大学生的身高分布较为分散.

(2)由程序框图可得s表示10位南方大学生身高的方差

由题意得10位南方大学生身高的平均数

故方差为

s是描述身高的离散程度的量,它的统计学意义是s的值越小,表示身高越整齐,s的值越大,表示身高越参差不齐.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知点A,B的坐标分别为(﹣2,0),(2,0).直线AP,BP相交于点P,且它们的斜率之积是﹣ .记点P的轨迹为Г. (Ⅰ)求Г的方程;
(Ⅱ)已知直线AP,BP分别交直线l:x=4于点M,N,轨迹Г在点P处的切线与线段MN交于点Q,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】盒中有6只灯泡,其中2只次品,4只正品,有放回地从中任取两次,每次取一只,试求下列事件的概率:
(1)取到的2只都是次品;
(2)取到的2只中正品、次品各一只;
(3)取到的2只中至少有一只正品.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=sin(2x+φ)(|φ|<π)的图象向左平移 个单位后关于原点对称,则函数f(x)在[0, ]上的最小值为(
A.﹣
B.﹣
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x>0,由不等式x+ ≥2 =2,x+ = ≥3 =3,…,可以推出结论:x+ ≥n+1(n∈N*),则a=(
A.2n
B.3n
C.n2
D.nn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.

1)若作为矩形的边长,记矩形的面积为,求的概率;

2)若求这两数之差不大于2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在外接圆直径为1的△ABC中,角A,B,C的对边分别为a,b,c,设向量 =(a,cosB), =(b,cosA),且
(1)求sinA+sinB的取值范围;
(2)若abx=a+b,试确定实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体中,平面,四边形是菱形.

(1)证明:平面平面

(2)若,设,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若将函数 的图象向左平移φ(φ>0)个单位,所得图象关于原点对称,则φ最小时,tanφ=(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案