分析 分别解不等式组中的两个一次不等式,求它们都成立的交集,可得原不等式组的解集.
解答 解:(1)不等式组$\left\{\begin{array}{l}{2x>1}\\{-3x<2}\end{array}\right.$可化为:$\left\{\begin{array}{l}x>\frac{1}{2}\\ x>-\frac{2}{3}\end{array}\right.$,
解得:x>$\frac{1}{2}$,
故原不等式组的解集为:($\frac{1}{2}$,+∞);
(2)不等式组$\left\{\begin{array}{l}{-5x-1≥0}\\{4x+2<0}\end{array}\right.$可化为:$\left\{\begin{array}{l}x≤-\frac{1}{5}\\ x<-\frac{1}{2}\end{array}\right.$,
解得:x<-$\frac{1}{2}$,
故原不等式组的解集为:(-∞,-$\frac{1}{2}$);
(3)不等式组$\left\{\begin{array}{l}{\frac{1}{2}x>x+1}\\{3x+6≥x-1}\end{array}\right.$可化为:$\left\{\begin{array}{l}x<-2\\ x≥-\frac{7}{2}\end{array}\right.$,
解得:$-\frac{7}{2}≤$x<-2,
故原不等式组的解集为:[-$\frac{7}{2}$,-2);
(4)不等式组$\left\{\begin{array}{l}{\frac{1}{2}x-\frac{1}{3}x≤1}\\{x-\frac{1}{5}x>2}\end{array}\right.$可化为:$\left\{\begin{array}{l}x≤6\\ x>\frac{5}{2}\end{array}\right.$,
解得:$\frac{5}{2}$<x≤6,
故原不等式组的解集为:($\frac{5}{2}$,6]
点评 本题考查的知识点是一元一次不等式组的解法,难度不大,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 10 | B. | 10或11 | C. | 11 | D. | 9或10 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{2}{3}$ | B. | $\frac{3}{2}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com