精英家教网 > 高中数学 > 题目详情
某工厂对某产品的产量与成本的资料分析后有如下数据:
产量x千件2356
成本y万元78912
(1)画出散点图.
(2)求成本y与产量x之间的线性回归方程.(结果保留两位小数)
(1)散点图如图
(2)设y与产量x的线性回归方程为
?
y
=bx+a

.
x
=
2+3+5+6
4
=4,
.
y
=
7+8+9+12
4
=9
b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x2i
-n
.
x
2
=
(x1y1+x2y2+x3y3+x4y4)-4
.
x
.
y
x21
+
x22
+
x23
+
x24
-4
.
x
2
=
11
10
=1.10
a=
.
y
-b
.
x
=9-1.10×4=4.60(11分)
∴回归方程为:
?
y
=1.10x+4.60

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某化工厂为预测某产品的回收率,需要研究它和原料有效成分含量之间的相关关系,现取对观测值,计算得,求之间的回归直线方程.(精确到

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为了解儿子身高与其父亲身高的关系,随机抽取3对父子的身高数据如表:则y对x的线性回归方程为(  )
父亲身高x(cm)174176178
儿子身高y(cm)176175177
A.
y
=
1
2
x+66
B.
y
=
1
4
x+132
C.
y
=
1
2
x+132
D.
y
=
1
4
x+66

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某名学生在连续五次考试中数学成绩与物理成绩如下:
数学(x)7075808590
物理(y)6065707580
(Ⅰ)用茎叶图表示数学成绩与物理成绩;
(Ⅱ)数学成绩为x,物理成绩为y,求变量x与y之间的回归直线方程.
(注:
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
=
n
i
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下表提供了某厂节能降耗技术改造后在生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据:
x3456
y2.53m4.5
若根据上表提供的数据用最小二乘法可求得y对x的回归直线方程是
y
=0.7x+0.35,则表中m的值为(  )
A.4B.4.5C.3D.3.5

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为了对新产品进行合理定价,对这类产品进行了试销试验,用以观察需求量y(单位:千件)对于价格x(单位:千元)的反应,得到数据如下:
x5070804030909597
y1008060120135555048
(1)求变量y与x之间的相关系数r,并对变量y与x进行相关性检验;
(2)若y与x之间具有线性相关关系,求回归直线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

由一组样本数据(x1,y1),(x2,y2),(x3,y3)…(xn,yn)得到的回归直线方程
?
y
=bx+a
,那么,下面说法不正确的是(  )
A.直线
?
y
=bx+a
必经过点(
.
x
.
y
)
B.直线
?
y
=bx+a
至少经过(x1,y1),(x2,y2),(x3,y3)…(xn,yn)中的一个点;
C.直线
?
y
=bx+a
的斜率为b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x2i
-n
.
x
2
D.直线
?
y
=bx+a
和各点(x1,y1),(x2,y2),(x3,y3)…(xn,yn)的偏差Q=
n
i=1
[yi-(bxi+a)]2
是坐标平面上的所有直线与这些点的偏差中最小值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某公司一种产品的全年广告费用x(万元)与销售额y(万元)之间有如下的对应数据:
x(万元)24568
y(万元)3040605070
(1)试根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程
y
=
b
x+
a

(2)若该公司预计在2009年对该产品投入广告费用10万元,试估计2009年该产品的销售额.(用最小二乘法求线性回归方程系数公式
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分为5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.
P(x2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828

(Ⅰ)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;
(Ⅱ)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?附:x2=
n(n11n22-n12n21)
n1*n2*n*1n*2
(注:此公式也可以写成k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

同步练习册答案