精英家教网 > 高中数学 > 题目详情

【题目】已知函数

时,画出函数的图像,并写出使得的所有组成的集合.

若该函数的图像都在轴的上方,求的取值范围.

若该函数在区间上不单调,求的取值范围.

【答案】1)图像见解析,23

【解析】

1)当时,,利用二次函数的性质,直接画出函数的图象即可,通过图象可得的所有组成的集合;(2)由二次函数的性质可得判别式,解出不等式即可;(3)根据对称轴与所给区间的关系列出不等式即可.

1)当时,,根据二次函数的性质可得其图象如下图所示:

由图可得,使得的所有组成的集合为.

2)若函数的图像都在轴的上方,

则判别式,解得

的取值范围为.

3)二次函数开口向上,对称轴为

由于该函数在区间上不单调,

所以,解得

的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

,求的单调区间;

是否存在实数a,使的最小值为0?若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车的燃油效率是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )

A. 消耗1升汽油,乙车最多可行驶5千米

B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多

C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油

D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某蛋糕店制作并销售一款蛋糕,当天每售出个获得利润元,未售出的每个亏损元.根据以往天的资料统计,得到如下需求量表.元日这天,此蛋糕店制作了这款蛋糕个.以(单位:个, )表示这天的市场需求量. (单位:元)表示这天出售这款蛋糕获得的利润.

需求量/个

天数

15

25

30

20

10

(1)当时,若时获得的利润为 时获得的利润为,试比较的大小;

(2)当时,根据上表,从利润不少于元的天数中,按需求量分层抽样抽取天,

(ⅰ)求这天中利润为元的天数;

(ⅱ)再从这天中抽取天做进一步分析,设这天中利润为元的天数为,求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题α:函数的定义域是R;命题β:在R上定义运算xy=x1-y).不等式(x-ax+a)<1对任意实数x都成立.

1)若αβ中有且只有一个真命题,求实数a的取值范围;

2)若αβ中至少有一个真命题,求实数a的取值范围;

3)若αβ中至多有一个真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某蛋糕店制作并销售一款蛋糕,当天每售出个利润为元,未售出的每个亏损元.根据以往天的统计资料,得到如下需求量表,元旦这天,此蛋糕店制作了个这种蛋糕.以(单位:个, )表示这天的市场需求量. (单位:元)表示这天售出该蛋糕的利润.

需求量/个

天数

10

20

30

25

15

(1)将表示为的函数,根据上表,求利润不少于元的概率;

(2)估计这天的平均需求量(同一组数据用该区间的中点值作代表);

(3)元旦这天,该店通过微信展示打分的方式随机抽取了名市民进行问卷调查,调查结果如下表所示,已知在购买意愿强的市民中,女性的占比为.

购买意愿强

购买意愿弱

合计

女性

28

男性

22

合计

28

22

50

完善上表,并根据上表,判断是否有的把握认为市民是否购买这种蛋糕与性别有关?

附: .

0.05

0.025

0.010

0.005

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高中非毕业班学生人数分布情况如下表,为了了解这2000个学生的体重情况,从中随机抽取160个学生并测量其体重数据,根据测量数据制作了下图所示的频率分布直方图.

(1)为了使抽取的160个样品更具代表性,宜采取分层抽样,请你给出一个你认为合适的分层抽样方案,并确定每层应抽取的样品个数;

(2)根据频率分布直方图,求的值,并估计全体非毕业班学生中体重在内的人数;

(3)已知高一全体学生的平均体重为,高二全体学生的平均体重为,试估计全体非毕业班学生的平均体重.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区对一种新品种小麦在一块试验田进行试种.从试验田中抽取株小麦,测量这些小麦的生长指标值,由测量结果得如下频数分布表:

生长指标值分组

频数

(1)在相应位置上作出这些数据的频率分布直方图;

(2)求这株小麦生长指标值的样本平均数和样本方差(同一组中的数据用该组区间的中点值作代表);

(3)由直方图可以认为,这种小麦的生长指标值服从正态分布,其中近似为样本平均数 近似为样本方差.

①利用该正态分布,求

②若从试验田中抽取株小麦,记表示这株小麦中生长指标值位于区间的小麦株数,利用①的结果,求.

附: .

,则

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年某开发区一家汽车生产企业计划引进一批新能源汽车制造设备,通过市场分析,全年需投入固定成本3000万元,每生产x(百辆),需另投入成本万元,且,由市场调研知,每辆车售价6万元,且全年内生产的车辆当年能全部销售完.

1)求出2019年的利润(万元)关于年产量x(百辆)的函数关系式;(利润=销售额成本)

22019年产量为多少(百辆)时,企业所获利润最大?并求出最大利润.

查看答案和解析>>

同步练习册答案