精英家教网 > 高中数学 > 题目详情
14.对于实数a和b,定义运算*:$a*b=\left\{\begin{array}{l}{a^2}-ab(a≤b)\\{b^2}-ab(a>b)\end{array}\right.$,设f(x)=(2x-1)*(x-1),若直线y=m与函数y=f(x)恰有三个不同的交点,则m的取值范围(0,$\frac{1}{4}$).

分析 化简f(x)=$\left\{\begin{array}{l}{(2x-1)x,x≤0}\\{-x(x-1),x>0}\end{array}\right.$,作函数f(x)的图象,利用数形结合的方法求解.

解答 解:当x≤0时,2x-1≤x-1,
f(x)=(2x-1)*(x-1)
=(2x-1)2-(2x-1)(x-1)
=(2x-1)x,
当x>0时,2x-1>x-1,
f(x)=(2x-1)*(x-1)=-x(x-1),
故f(x)=$\left\{\begin{array}{l}{(2x-1)x,x≤0}\\{-x(x-1),x>0}\end{array}\right.$,
作函数f(x)=$\left\{\begin{array}{l}{(2x-1)x,x≤0}\\{-x(x-1),x>0}\end{array}\right.$的图象如下,

结合图象可知,
m的取值范围为(0,$\frac{1}{4}$);
故答案为:(0,$\frac{1}{4}$).

点评 本题考查了数形结合的思想的应用及分段函数的化简与运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.在(1+x)(2+x)5的展开式中,x3的系数为120(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知A=$\{x|y=\sqrt{x-2}\},B=\{y|y={x^2}+a\},且A=B$,则a=(  )
A.lB.2C.0D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某商店计划每天购进某商品若干千件,商店每销售一件该商品可获利涧50元,供大于求时,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外徘调剂,此时每件调剂商品可获利30元.
(1)若商店一天购进该商品10件,求当天的利润y(单位:元)关于当天需求量n(单位:件,n∈N*)的函数解析式;
(2)商店记录了50天该商品的日需求量n(单位:件).整理得下表:
日需求量 9 1011 12 
 频数 9 11 15 105
若商店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求该商品一天的利润X的分布列及平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=loga$\frac{3+x}{3-x}$(a>1).
(1)讨论函数f(x)的单调性;
(2)若f(x)≥loga(2x),求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知关于x的方程${log_2}({4^x}+1)=x+a$有两个不同实数解,则实数a的取值范围为(  )
A.(-∞,0)B.(-1,2)C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若数列{an}的前n项和Sn=n2+1 则a1+a9等于(  )
A.18B.19C.20D.21

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.以{an}是首项为1的正项数列且(n+1)a2n+1-na2n+an+1•an=0(n∈N*),求an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知集合D={(x1,x2)|x1>0,x2>0,x1+x2=k},其中k为正常数,设u=x1x2
(1)若k=2,求u的取值范围;
(2)若k=2,(x1,x2)∈D,求($\frac{1}{{x}_{1}}$-x1)($\frac{1}{{x}_{2}}$-x2)的最大值;
(3)若不等式($\frac{1}{{x}_{1}}$-x1)($\frac{1}{{x}_{2}}$-x2)≥($\frac{k}{2}$-$\frac{2}{k}$)2对任意(x1,x2)∈D恒成立,求k4+16k2的最大值.

查看答案和解析>>

同步练习册答案