精英家教网 > 高中数学 > 题目详情
已知实系数方程x2+ax+2b=0的一个根大于0且小于1,另一根大于1且小于2,则的取值范围是( )
A.(,1)
B.(,1)
C.(-
D.(0,
【答案】分析:先根据根的分布列出约束条件画出可行域,再利用几何意义求最值,本例中,的取值的几何意义是斜率.
解答:解:设f(x)=x2+ax+2b,由题意得:
,即
在坐标系aOb中画出上述不等式组表示的平面区域,
由题意,约束条件表示的平面区域为阴影部分(不包括边界).
目标函数的几何意义为可行域内的连接两点(x,y)与点C(1,2)的直线的斜率,
根据平面区域,易求得的最大值为kBC=1,最小值为kAC=
故得∈(,1),
故选A
点评:本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.解决时,首先要解决的问题是让学生明白题目中目标函数的意义.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实系数方程x2+ax+2b=0的一个根大于0且小于1,另一根大于1且小于2,则
b-2
a-1
的取值范围是(  )
A、(
1
4
,1)
B、(
1
2
,1)
C、(-
1
2
1
4
D、(0,
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实系数方程x2+ax+1=0的一个实根在区间(1,2)内,则a的取值范围为(  )
A、(-2,-1)
B、(-
5
2
,-2)
C、(1,2)
D、(2,
5
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实系数方程x2+(m+1)x+m+n+1=0的两个实根分别为x1、x2,且0<x1<1,x2>1,则
n
m
的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实系数方程x2+(a+1)x+a+b+1=0的两根分别为一个椭圆和一个双曲线的离心率,则
b
a
的取值范围是(  )
A、(-2,-1)
B、(-1,-
1
2
)
C、(-2,-
1
2
)
D、(-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实系数方程x2+(m+1)x+m+n+1=0的两个实数根分别是x1,x2,且0<x1<1,x2>1,则u=
m2+n2
mn
的取值范围是(  )

查看答案和解析>>

同步练习册答案