精英家教网 > 高中数学 > 题目详情
设椭圆的左焦点为F1(-2,0),左准线l1与x轴交于点N(-3,0),过N点作直线l交椭圆于A、B两点.
(1)求椭圆的方程;
(2)若以AB为直径的圆过点F1,试求直线l的方程.
【答案】分析:(1)根据题设知c=2,,由此能求出椭圆方程.
(2)当直线AB⊥x轴时,设AB的方程为y=k(x+3),由,然后由韦达定理结合题设条件进行求解.
解答:解:(1)c=2,
∴椭圆方程为(4分)
(2)当直线AB⊥x轴时,
与椭圆无公共点,∴可设AB的方程为y=k(x+3)

即(3k2+1)x2+18k2x+27k2-6=0①
设A(x1,y1),B(x2,y2),则有(4分)
依题设有,
即(x1+2)(x2+2)+y1y2=0(2分)x1x2+2(x1+x2)+4+k2[x1x2+3(x1+x2)+9]=0(k2+1)x1x2+(3k2+2)(x1+x2)+9k2+4=0(4分)

时问题的解
∴AB的方程为(2分)
点评:本题考查直线和圆锥曲线的综合运用,解题时要认真审题,合理地进行等价转化,注意挖掘题设中的隐含条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线y=-x+1与椭圆
x2
a2
+
y2
b2
=1
(a>b>0)相交于A、B两点.
(1)若椭圆的离心率为
3
3
,焦距为2,求线段AB的长;
(2)在(1)的椭圆中,设椭圆的左焦点为F1,求△ABF1的面积.

查看答案和解析>>

科目:高中数学 来源:河北省正定中学高三下学期第二次考试数学(理) 题型:解答题

(本题满分12分)已知椭圆的离心率为
直线与以原点为圆心、以椭圆的短半轴长为半径的圆相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左焦点为F1,右焦点为F2,直线过点F1,且垂直于椭圆的长轴,动直线垂直于点P,线段PF2的垂直平分线交于点M,求点M的轨迹C2的方程;
(Ⅲ)若AC、BD为椭圆C1的两条相互垂直的弦,垂足为右焦点F2,求四边形ABCD的面积的最小值.

查看答案和解析>>

科目:高中数学 来源:河北省高三下学期第二次考试数学(理) 题型:解答题

(本题满分12分)已知椭圆的离心率为

直线与以原点为圆心、以椭圆的短半轴长为半径的圆相切.

(Ⅰ)求椭圆的方程;

(Ⅱ)设椭圆的左焦点为F1,右焦点为F2,直线过点F1,且垂直于椭圆的长轴,动直线垂直于点P,线段PF2的垂直平分线交于点M,求点M的轨迹C2的方程;

(Ⅲ)若AC、BD为椭圆C1的两条相互垂直的弦,垂足为右焦点F2,求四边形ABCD的面积的最小值.

 

 

查看答案和解析>>

科目:高中数学 来源:河北省高三下学期第二次考试数学(文) 题型:解答题

(本题满分12分)已知椭圆的离心率为

直线与以原点为圆心、以椭圆的短半轴长为半径的圆相切。

(Ⅰ)求椭圆的方程;

(Ⅱ)设椭圆的左焦点为F1,右焦点为F2,直线过点F1,且垂直于椭圆的长轴,动直

线垂直于点P,线段PF2的垂直平分线交于点M,求点M的轨迹C2的方程;

(Ⅲ)若AC、BD为椭圆C1的两条相互垂直的弦,垂足为右焦点F2,求四边形ABCD的面积

的最小值.

 

查看答案和解析>>

科目:高中数学 来源:河北省高三下学期第二次考试数学(文) 题型:解答题

(本题满分12分)已知椭圆的离心率为

直线与以原点为圆心、以椭圆的短半轴长为半径的圆相切。

(Ⅰ)求椭圆的方程;

(Ⅱ)设椭圆的左焦点为F1,右焦点为F2,直线过点F1,且垂直于椭圆的长轴,动直

线垂直于点P,线段PF2的垂直平分线交于点M,求点M的轨迹C2的方程;

(Ⅲ)若AC、BD为椭圆C1的两条相互垂直的弦,垂足为右焦点F2,求四边形ABCD的面积

的最小值.

 

查看答案和解析>>

同步练习册答案