【题目】已知函数f(x)=x2+alnx(a为实常数)
(1)若a=﹣2,求证:函数f(x)在(1,+∞)上是增函数;
(2)求函数f(x)在[1,e]上的最小值及相应的x值;
(3)若存在x∈[1,e],使得f(x)≤(a+2)x成立,求实数a的取值范围.
【答案】
(1)解:当a=﹣2时,f(x)=x2﹣2lnx,x∈(0,+∞),
则f′(x)=2x﹣ = (x>0)
由于f′(x)>0在(0,+∞)上恒成立,
故函数在(1,+∞)上是增函数;
(2)解:f′(x)=2x+ = (x>0),
当x∈[1,e]时,2x2+a∈[a+2,a+2e2].
①若a≥﹣2,f′(x)在[1,e]上非负(仅当a=﹣2,x=1时,f′(x)=0),
故函数f(x)在[1,e]上是增函数,此时[f(x)]min=f(1)=1
②若﹣2e2<a<﹣2,当x= 时,f′(x)=0;
当1≤x< 时,f′(x)<0,此时f(x)是减函数;
当 <x≤e时,f′(x)>0,此时f(x)是增函数.
故[f(x)]min=f( )= ln(﹣ )﹣ .
③若a≤﹣2e2,f'(x)在[1,e]上非正(仅当a=﹣2e2,x=e时,f'(x)=0),
故函数f(x)在[1,e]上是减函数,此时[f(x)]min=f(e)=a+e2.
综上可知,当a≥﹣2时,f(x)的最小值为1,相应的x值为1;
当﹣2e2<a<﹣2时,f(x)的最小值为 ln(﹣ )﹣ ,相应的x值为 ;
当a≤﹣2e2时,f(x)的最小值为a+e2,相应的x值为e.
(3)解:不等式f(x)≤(a+2)x,可化为a(x﹣lnx)≥x2﹣2x.
∵x∈[1,e],∴lnx≤1≤x且等号不能同时取,所以lnx<x,即x﹣lnx>0,
因而 (x∈[1,e])
令 (x∈[1,e]),则 ,
当x∈[1,e]时,x﹣1≥0,lnx≤1,x+2﹣2lnx>0,
从而g′(x)≥0(仅当x=1时取等号),所以g(x)在[1,e]上为增函数,
故g(x)的最小值为g(1)=﹣1,所以a的取值范围是[﹣1,+∞)
【解析】(1)当a=﹣2时,f′(x)>0在(0,+∞)上恒成立,故函数在(1,+∞)上是增函数;(2)求导f′(x)=2x+ = (x>0),当x∈[1,e]时,2x2+a∈[a+2,a+2e2].分①a≥﹣2,②﹣2e2<a<﹣2,③a≤﹣2e2,三种情况得到函数f(x)在[1,e]上是单调性,进而得到[f(x)]min;(3)由题意可化简得到 (x∈[1,e]),令 (x∈[1,e]),利用导数判断其单调性求出最小值为g(1)=﹣1.
科目:高中数学 来源: 题型:
【题目】设函数f(x)=2017x+sin2017x,g(x)=log2017x+2017x , 则( )
A.对于任意正实数x恒有f(x)≥g(x)
B.存在实数x0 , 当x>x0时,恒有f(x)>g(x)
C.对于任意正实数x恒有f(x)≤g(x)
D.存在实数x0 , 当x>x0时,恒有f(x)<g(x)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】端午节小长假期间,张洋与几位同学从天津乘火车到大连去旅游,若当天从天津到大连的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响,则这三列火车恰好有两列正点到达的概率是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥S﹣ABC中,SB⊥底面ABC,且SB=AB=2,BC= ,D、E分别是SA、SC的中点.
(Ⅰ)求证:平面ACD⊥平面BCD;
(Ⅱ)求二面角S﹣BD﹣E的平面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣1|﹣|x+1|.
(1)求不等式|f(x)|<1的解集;
(2)若不等式|a|f(x)≥|f(a)|对任意a∈R恒成立,求实数x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设z1 , z2是复数,给出下列四个命题: ①若|z1﹣z2|=0,则 = ②若z1= ,则 =z2
③若|z1|=|z2|,则z1 =z2 ④若|z1|=|z2|,则z12=z22
其中真命题的序号是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com