精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥中, 平面 为线段上一点, 的中点.

(1)证明: 平面

(2)求异面直线所成角的余弦值.

【答案】(1)见解析;(2) 所求角的余弦值.

【解析】试题分析:1)设的中点,连接,,由三角形中位线定理结合已知可得四边形为平行四边形,得到 .再由线面平行的判定可得MN∥平面PAB

(2)取边的靠近点的四等分点,连接 ,可证异面直线所成角就等于所成的角,则在中设法求出 最后由余弦定理可求求异面直线所成角的余弦值.

试题解析(1)由已知得

的中点,连接

中点知 .

,故平行且等于

四边形为平行四边形,于是

因为平面 平面

所以 平面.

(2)取边的靠近点的四等分点,连接 ,则

四边形为平行四边形

所以异面直线所成角就等于所成的角

所以所求角的余弦值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知正方体

求证:(ⅰ

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:

交强险浮动因素和浮动费率比率表

浮动因素

浮动比率

上一个年度未发生有责任道路交通事故

下浮10%

上两个年度未发生责任道路交通事故

下浮20%

上三个及以上年度未发生有责任道路交通事故

下浮30%

上一个年度发生一次有责任不涉及死亡的道路交通事故

0%

上一个年度发生两次及两次以上有责任道路交通事故

上浮10%

上一个年度发生有责任道路交通死亡事故

上浮30%

某机购为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:

类型

数量

10

5

5

20

15

5

(1)求一辆普通6座以下私家车在第四年续保时保费高于基本保费的频率;

(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事用户车盈利10000元,且各种投保类型车的频率与上述机构调查的频率一致,完成下列问题:

①若该销售商店内有六辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选两辆车,求这两辆车恰好有一辆为事故车的概率;

②若该销售商一次购进120辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右顶点分别为,上、下顶点分别为 为坐标原点,四边形的面积为,且该四边形内切圆的方程为

(Ⅰ)求椭圆的方程;

(Ⅱ)若是椭圆上的两个不同的动点,直线的斜率之积等于,试探求的面积是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】团购已成为时下商家和顾客均非常青睐的一种省钱、高校的消费方式,不少商家同时加入多家团购网.现恰有三个团购网站在市开展了团购业务, 市某调查公司为调查这三家团购网站在本市的开展情况,从本市已加入了团购网站的商家中随机地抽取了50家进行调查,他们加入这三家团购网站的情况如下图所示.

(1)从所调查的50家商家中任选两家,求他们加入团购网站的数量不相等的概率;

(2)从所调查的50家商家中任取两家,用表示这两家商家参加的团购网站数量之差的绝对值,求随机变量的分布列和数学期望;

(3)将频率视为概率,现从市随机抽取3家已加入团购网站的商家,记其中恰好加入了两个团购网站的商家数为,试求事件“”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn=3n+m(m为常数,n∈N+)
(1)求a1 , a2 , a3
(2)若数列{an}为等比数列,求常数m的值及an
(3)对于(2)中的an , 记f(n)=λa2n+1﹣4λan+1﹣7,若f(n)<0对任意的正整数n恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有道数学题,其中道选择题, 道填空题,小明从中任取道题,求

1)所取的道题都是选择题的概率

2)所取的道题不是同一种题型的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次爱心捐款活动中,小李为了了解捐款数额是否和居民自身的经济收入有关,随机调査了某地区的个捐款居民每月平均的经济收入. 在捐款超过元的居民中,每月平均的经济收入没有达到元的有个,达到元的有个;在捐款不超过元的居民中,每月平均的经济收入没有达到元的有.

(1)在下图表格空白处填写正确数字,并说明是否有以上的把握认为捐款数额是否超过元和居民毎月平均的经济收入是否达到元有关?

(2)将上述调查所得到的频率视为概率. 现在从该地区大量居民中,采用随机抽样方法毎次抽取个居民,共抽取次,记被抽取的个居民中经济收入达到元的人数为,求和期望的值.

每月平均经济收入达到

每月平均经济收入没有达到

合计

捐款超过

捐款不超过

合计

附: ,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,且cos(α﹣β)= ,sin(α+β)=﹣ ,求:cos2α的值.

查看答案和解析>>

同步练习册答案