精英家教网 > 高中数学 > 题目详情

【题目】若函数 在区间[﹣k,k](k>0)上的值域为[m,n],则m+n等于(
A.0
B.2
C.4
D.6

【答案】D
【解析】解:∵

∴f(﹣x)=3+ =3﹣

∴f(x)+f(﹣x)=6.①

又f(x)在区间[﹣k,k](k>0)上的值域为[m,n],

即无论k取什么样的正实数都应有最大值与最小值的和是一个确定的值,

故可令k=1,由于函数 在区间[﹣k,k](k>0)上是一个增函数,

故m+n=f(k)+f(﹣k)

由①知,m+n=f(k)+f(﹣k)=6.

故选:D.

【考点精析】掌握函数的值域是解答本题的根本,需要知道求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若集合A={1,2,3},B={(x,y)|x+y﹣4>0,x,y∈A},则集合B中的元素个数为(
A.9
B.6
C.4
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若f(x)=sin(2x+φ)+b,对任意实数x都有f(x+ )=f(﹣x),f( )=﹣1,则实数b的值为(
A.﹣2或0
B.0或1
C.±1
D.±2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对数列{an},如果k∈N*及λ1 , λ2 , …,λk∈R,使an+k1an+k12an+k2+…+λkan成立,其中n∈N* , 则称{an}为k阶递归数列.给出下列三个结论: ①若{an}是等比数列,则{an}为1阶递归数列;
②若{an}是等差数列,则{an}为2阶递归数列;
③若数列{an}的通项公式为 ,则{an}为3阶递归数列.
其中,正确结论的个数是(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线yx﹣2与抛物线y2=2x交于AB两点,O为坐标原点,则过ABO三点的圆的方程为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,曲线y=f(x)在点(e2 , f(e2))处的切线与直线2x+y=0垂直(其中e为自然对数的底数).
(1)求f(x)的解析式及单调递减区间;
(2)若存在x0∈[e,+∞),使函数g(x)=aelnx+ lnxf(x)≤a成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,给定两个平面单位向量 ,它们的夹角为120°,点C在以O为圆心的圆弧AB上,且 (其中x,y∈R),则满足x+y≥ 的概率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn=an+n2﹣1,数列{bn}满足3nbn+1=(n+1)an+1﹣nan , 且b1=3,a1=3.
(1)求数列{ an}和{bn}的通项an , bn
(2)设Tn为数列{bn}的前n项和,求Tn , 并求满足Tn<7时n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的焦点为,准线为是抛物线上的两个动点,且满足.设线段的中点上的投影为,则的最大值是_______.

查看答案和解析>>

同步练习册答案