精英家教网 > 高中数学 > 题目详情

【题目】已知实数xy满足x+4y2.

1)若|1+y||x|2,求x的取值范围;

2)若x0y0,求的最小值.

【答案】1{x|xx}2)最小值为8

【解析】

1)由x+4y2,得,代入|1+y||x|2,可得,即|6x|4|x|8,然后对x分类求解,取并集得答案;

2)由x0y0,且x+4y2,得,展开后利用基本不等式求最值.

1)由x+4y2,得

|1+y||x|2,即|6x|4|x|8

x0,则6x<﹣4x8,∴

0x6时,则6x4x8,∴

x6时,则x64x8,∴x6.

x的取值范围为{x|xx}

2)∵x0y0,且x+4y2

.

当且仅当,即x1时,的最小值为8.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点分别是椭圆的左顶点和上顶点,为其右焦点,,且该椭圆的离心率为

1)求椭圆的标准方程;

2)设点为椭圆上的一动点,且不与椭圆顶点重合,点为直线轴的交点,线段的中垂线与轴交于点,若直线斜率为,直线的斜率为,且为坐标原点),求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数和函数.

1)若曲线处的切线过点,求实数的值;

2)求函数的单调区间;

3)若不等式对于任意的恒成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为连续10天,每天新增疑似病例不超过7”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是

A. 甲地:总体均值为3,中位数为4 B. 乙地:总体均值为1,总体方差大于0

C. 丙地:中位数为2,众数为3 D. 丁地:总体均值为2,总体方差为3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知边长为2的菱形ABCD,其中∠BAD120°,AECFCF⊥平面ABCD.

1)求证:平面BDE⊥平面BDF

2)求二面角DEFB的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线E的极坐标方程为,直线l的参数方程为(t为参数).P为曲线E上的动点,点Q为线段OP的中点.

1)求点Q的轨迹(曲线C)的直角坐标方程;

2)若直线l交曲线CAB两点,点恰好为线段AB的三等分点,求直线l的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,分别是棱上的点(点不同于点),且为棱上的点,且

求证:(1)平面平面

2平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线上任意一点(异于顶点)与双曲线两顶点连线的斜率之积为.

I)求双曲线渐近线的方程;

(Ⅱ)过椭圆上任意一点PP不在C的渐近线上)分别作平行于双曲线两条渐近线的直线,交两渐近线于两点,且,是否存在使得该椭圆的离心率为,若存在,求出椭圆方程:若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】底面为菱形的直四棱柱,被一平面截取后得到如图所示的几何体..

1)求证:

2)求二面角的正弦值.

查看答案和解析>>

同步练习册答案