¾«Ó¢¼Ò½ÌÍø¸÷Ïî¾ùΪÕýÊýµÄÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬Âú×ã2£¨Sn+1£©=an2+an£¨n¡ÊN*£©£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÈôÊýÁÐ{bn}Âú×ãb1=2£¬bn+1=2bn£¨n¡ÊN*£©£¬ÊýÁÐ{cn}Âú×ãcn=
an£¬n=2k-1
bn£¬n=2k
(k¡ÊN*)
£¬ÊýÁÐ{cn}µÄÇ°nÏîºÍΪTn£¬ÇóTn£»
£¨3£©ÈôÊýÁÐPn=
n2
4
+24n(n¡ÊN*)
£¬¼×ͬѧÀûÓõڣ¨2£©ÎÊÖеÄTn£¬ÊÔͼȷ¶¨T2k-P2k£¨k¡ÊN*£©µÄÖµÊÇ·ñ¿ÉÒÔµÈÓÚ2011£¿Îª´Ë£¬ËûÉè¼ÆÁËÒ»¸ö³ÌÐò£¨Èçͼ£©£¬µ«ÒÒͬѧÈÏΪÕâ¸ö³ÌÐòÈç¹û±»Ö´ÐлáÊÇÒ»¸ö¡°ËÀÑ­»·¡±£¨¼´³ÌÐò»áÓÀԶѭ»·ÏÂÈ¥£¬¶øÎÞ·¨½áÊø£©£¬ÄãÊÇ·ñͬÒâÒÒͬѧµÄ¹Ûµã£¿Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÓÉÌâÒâ¼°2£¨Sn+1£©=an2+an£¨n¡ÊN*£©£¬Áîn=1£¬ÇóµÃÊýÁеÄÊ×ÏÔÚÀûÓÃÒÑÖªÊýÁеÄÇ°nÏîºÍÇó³öÊýÁеÄͨÏ
£¨2£©ÊýÁÐ{bn}Âú×ãb1=2£¬bn+1=2bn£¨n¡ÊN*£©£¬¿ÉÒÔÇó³öÊýÁÐbnµÄͨÏʽ£¬ÔÙÓÐÊýÁÐ{cn}Âú×ãcn=
an£¬n=2k-1
bn£¬n=2k
(k¡ÊN*)
£¬ÀûÓ÷Ö×éÇóºÍÇó³öÊýÁÐcnµÄÇ°nÏîµÄºÍ£»
£¨3£©ÓÉÌâÒâ¼°£¨2£©¿ÉÖªnΪżÊý£¬¼´dn=A-B=Tn-Pn=
4
3
2n-
47
2
n-
4
3
£¬ÓÉÓÚdn+2-dn=2n+2-47·ÖÎö¸Ãʽ¼´¿É£®
½â´ð£º½â£º£¨1£©n=1£¬2£¨S1+1£©=a12+a1?a1=2£®
n¡Ý2£¬2(Sn+1)=an2+an
2(Sn-1+1)=an-12+an-1
£¬
Á½Ê½Ïà¼õ£¬µÃ2an=an2-an-12+an-an-1
¡ßan£¾0£¬¡àan-an-1=1£®
?{an}ΪµÈ²îÊýÁУ¬Ê×ÏîΪ2£¬¹«²îΪ1
¡àan=n+1£¨n¡ÊN*£©£®
£¨2£©¡ß{bn}ÊÇÊ×ÏîΪ2£¬¹«±ÈΪ2µÄµÈ±ÈÊýÁУ¬
¡àbn=2n£¨n¡ÊN*£©£¬
nΪżÊýʱ£¬Tn=£¨a1+a3++an-1£©+£¨b2+b4++bn£©
=
(a1+an-1)•
n
2
2
+
4(1-4
n
2
)
1-4
=
n2+2n
4
+
4
3
(2n-1)
£»
nΪÆæÊýʱ£¬Tn=Tn-1+cn£¬
=
(n-1)2+2(n-1)
4
+
4
3
(2n-1-1)+(n+1)
=
n2+4n+3
4
+
1
3
2n+1-
4
3
£¬
£¨3£©¡ßn=2kΪżÊý£¬
¡àTn=
n2+2n
4
+
4
3
(2n-1)
£¬Pn=
n2
4
+24n

Éèdn=A-B=Tn-Pn=
4
3
2n-
47
2
n-
4
3
£¬
¡ßdn+2-dn=2n+2-47£¬
¡àd4£¼d6£¼d8£¼d10£¼2011£¼d12£¼d14£¼¡­£¬ÇÒd2£¼2011
¡àdn¡Ù2011£¬¼´Tn-Pn¡Ù2011£¨nΪżÊý£©£¬
¡àÒÒͬѧµÄ¹ÛµãÕýÈ·£®
µãÆÀ£º´ËÌ⿼²éÁËÒÑÖªÊýÁеÄÇ°nÏîºÍÇóÊýÁеÄͨÏµÈ±ÈÊýÁеĶ¨Ò弰ͨÏʽ£¬»¹¿¼²éÁËѧÉú·ÖÀàÌÖÂÛµÄ˼Ï룮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éèµ¥µ÷µÝÔöº¯Êýf£¨x£©µÄ¶¨ÒåÓòΪ£¨0£¬+¡Þ£©£¬ÇÒ¶ÔÈÎÒâµÄÕýʵÊýx£¬yÓÐf£¨xy£©=f£¨x£©+f£¨y£©£¬ÇÒf(
1
2
)=-1
£®
£¨1£©Ò»¸ö¸÷Ïî¾ùΪÕýÊýµÄÊýÁÐ{an}Âú×㣺f£¨sn£©=f£¨an£©+f£¨an+1£©-1ÆäÖÐSnΪÊýÁÐ{an}µÄÇ°nÏîºÍ£¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬ÊÇ·ñ´æÔÚÕýÊýMʹÏÂÁв»µÈʽ£º2n•a1a2¡­an¡ÝM
2n+1
(2a1-1)(2a2-1)¡­(2an-1)
¶ÔÒ»ÇÐn¡ÊN*³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öMµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸÷Ïî¾ùΪÕýÊýµÄÊýÁÐ{an}ÖУ¬a1=1£¬SnÊÇÊýÁÐ{an}µÄÇ°nÏîºÍ£¬¶ÔÈÎÒân¡ÊN©~£¬ÓÐ2Sn=2p
a
2
n
+pan-p£¨p¡ÊR£©£®
£¨1£©Çó³£ÊýpµÄÖµ£»
£¨2£©ÇóÊýÁÐ{an}µÄÇ°nÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¸÷Ïî¾ùΪÕýÊýµÄÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÇÒSn£¬an£¬
1
2
³ÉµÈ²îÊýÁУ¬
£¨1£©Çóa1£¬a2µÄÖµ£»
£¨2£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©Èôbn=4-2n£¨n¡ÊN*£©£¬Éècn=
bn
an
£¬ÇóÊýÁÐ{cn}µÄÇ°nÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸÷Ïî¾ùΪÕýÊýµÄÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬Çҵ㣨an£¬Sn£©ÔÚº¯Êýy=
1
2
x2+
1
2
x-3
µÄͼÏóÉÏ£¬
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©¼Çbn=nan(n¡ÊN*)£¬ÇóÖ¤£º
1
b1
+
1
b2
+¡­+
1
bn
£¼
3
4
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2008•³¤ÄþÇø¶þÄ££©ÒÑÖª¸÷Ïî¾ùΪÕýÊýµÄÊýÁÐ{an}µÄÇ°nÏîºÍsnÂú×ãs1£¾1£¬ÇÒ6sn=£¨an+1£©£¨an+2£©£¨nΪÕýÕûÊý£©£®
£¨1£©Çó{an}µÄͨÏʽ£»
£¨2£©ÉèÊýÁÐ{bn}Âú×ãbn=
an£¬nΪżÊý
2an£¬nΪÆæÊý
£¬ÇóTn=b1+b2+¡­+bn£»
£¨3£©ÉèCn=
bn+1
bn
£¬(nΪÕýÕûÊý)
£¬ÎÊÊÇ·ñ´æÔÚÕýÕûÊýN£¬Ê¹µÃn£¾NʱºãÓÐCn£¾2008³ÉÁ¢£¿Èô´æÔÚ£¬ÇëÇó³öËùÓÐNµÄ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸