精英家教网 > 高中数学 > 题目详情
两直线l1:y=k1xb1l2:y=k2xb2垂直的充要条件是___________.两直线A1xB1y+  C1=0与A2xB2yC2=0垂直的充要条件是___________.

k1k2=-A1A2B1B2=0

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆┍的方程为
x2
a2
+
y2
b2
=1(a>b>0),点P的坐标为(-a,b).
(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足
PM
=
1
2
PA
+
PB
),求点M的坐标;
(2)设直线l1:y=k1x+p交椭圆┍于C、D两点,交直线l2:y=k2x于点E.若k1•k2=-
b2
a2
,证明:E为CD的中点;
(3)对于椭圆┍上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆┍上存在不同的两个交点P1、P2满足
PP1
+
PP2
=
PQ
,写出求作点P1、P2的步骤,并求出使P1、P2存在的θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆Γ的方程为
x2
a2
+
y2
b2
=1(a>b>0)
,A(0,b)、B(0,-b)和Q(a,0)为Γ的三个顶点.
(1)若点M满足
AM
=
1
2
(
AQ
+
AB
)
,求点M的坐标;
(2)设直线l1:y=k1x+p交椭圆Γ于C、D两点,交直线l2:y=k2x于点E.若k1k2=-
b2
a2
,证明:E为CD的中点;
(3)设点P在椭圆Γ内且不在x轴上,如何构作过PQ中点F的直线l,使得l与椭圆Γ的两个交点P1、P2满足
PP1
+
PP2
=
PQ
PP1
+
PP2
=
PQ
?令a=10,b=5,点P的坐标是(-8,-1),若椭圆Γ上的点P1、P2满足
PP1
+
PP2
=
PQ
,求点P1、P2的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中有两定点F1(0,
3
)
F2(0,-
3
)
,若动点M满足|
MF1
|+|
MF2
|=4
,设动点M的轨迹为C.
(1)求曲线C的方程;
(2)设直线l:y=kx+t交曲线C于A、B两点,交直线l1:y=k1x于点D,若k•k1=-4,证明:D为AB的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两条直线l1:y-3=k1(x-1),l2:y-3=k2(x-2),则下列说法正确的是(  )
A、l1与l2一定相交B、l1与l2一定平行C、l1与l2一定相交或平行D、以上说法都不对

查看答案和解析>>

科目:高中数学 来源:2010年全国普通高等学校招生统一考试、文科数学(上海卷) 题型:044

已知椭圆的方程为=1(a>b>0),A(0,b)、B(0,-b)和Q(a,0)为的三个顶点.

(1)若点M满足,求点M的坐标;

(2)设直线l1yk1xp交椭圆CD两点,交直线l2yk2x于点E.若k1·k2,证明:ECD的中点;

(3)设点P在椭圆内且不在x轴上,如何构作过PQ中点F的直线l,使得l与椭圆的两个交点P1P2满足?令a=10,b=5,点P的坐标是(-8,-1).若椭圆上的点P1P2满足,求点P1P2的坐标.

查看答案和解析>>

同步练习册答案