精英家教网 > 高中数学 > 题目详情
已知动圆过定点D(1,0),且与直线l:x=-1相切.
(1)求动圆圆心M的轨迹C;
(2)过定点D(1,0)作直线l交轨迹C于A、B两点,E是D点关于坐标原点O的对称点,求证:∠AED=∠BED.
分析:(1)由抛物线的定义知,到定点的距离等于到定直线的距离的点的轨迹为抛物线,所以动圆圆心M的轨迹为抛物线,再用求抛物线方程的方法求出轨迹C的方程即可.
(2)要证明∠AED=∠BED,只需证明两个角的某一三角函数值相等,且角的范围相同,可利用这两角分别为两条直线的倾斜角,而两直线斜率相同来证即可.
解答:解:(1)由题知意:动圆圆心M的轨迹方程为:y2=4x,
∴动点M的轨迹C是以O(0,0)为顶点,以(1,0)为焦点的抛物线
(2)①当直线l垂直于x轴时,根据抛物线的对称性,有∠AED=∠BED;
②当直线L与X轴不垂直时,依题意,可设直线L的方程为y=k(x-1)(k≠0),
A(x1,y1),B(x2,y2)则A,B两点的坐标满足方程组
y=k(x-1)
y2=4x
  消去x并整理,得ky2-4y-4k=0,y1+y2=
4
k
,y1y2=-4
则:k1+k2=
y1
x1+1
+
y2
x2+1
=
y1(x2+1)+y2(x1+1)
(x1+1)(x2+1)
=
1
4
y
1
y22+
4
y2y12+y1+y2
(x1+1)(x2+1)

=
1
4
y
1
y2(y2y2) +(y1+y2)
(x1+1)(x2+1)
=
1
4
(-4)(
4
k
)+
4
k
 
(x1+1)(x2+1)
=0.
∴tan∠AED+tan(180°-∠BED)=0,∴tan∠AED=TAN∠BED,
∵0<∠AED<
π
2
,0<∠BED<
π
2
,∴∠AED=∠BED.
综合①、②可知∠AED=∠BED.
点评:本题考查了定义法求轨迹方程,以及直线倾斜角与斜率的关系,做题时要认真.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知动圆过定点A(4,0),且在y轴上截得的弦MN的长为8.
(1)求动圆圆心的轨迹C的方程;
(2)若轨迹C与圆M:(x-5)2+y2=r2(r>0)相交于A、B、C、D四个点,求r的取值范围;
(3)已知点B(-1,0),设不垂直于x轴的直线l与轨迹C交于不同的两点P,Q,若x轴是∠PBQ的角平分线,证明直线l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)下列四个命题中不正确的是(  )

查看答案和解析>>

科目:高中数学 来源:2008-2009学年浙江省温州市瑞安中学高二(下)期中数学试卷(文科)(解析版) 题型:解答题

已知动圆过定点D(1,0),且与直线l:x=-1相切.
(1)求动圆圆心M的轨迹C;
(2)过定点D(1,0)作直线l交轨迹C于A、B两点,E是D点关于坐标原点O的对称点,求证:∠AED=∠BED.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖北省黄冈市黄州一中高三(下)高考交流数学试卷(理科)(解析版) 题型:选择题

下列四个命题中不正确的是( )
A.若动点P与定点A(-4,0)、B(4,0)连线PA、PB的斜率之积为定值,则动点P的轨迹为双曲线的一部分
B.设m,n∈R,常数a>0,定义运算“*”:m*n=(m+n)2-(m-n)2,若x≥0,则动点的轨迹是抛物线的一部分
C.已知两圆A:(x+1)2+y2=1、圆B:(x-1)2+y2=25,动圆M与圆A外切、与圆B内切,则动圆的圆心M的轨迹是椭圆
D.已知A(7,0),B(-7,0),C(2,-12),椭圆过A,B两点且以C为其一个焦点,则椭圆的另一个焦点的轨迹为双曲线

查看答案和解析>>

同步练习册答案