精英家教网 > 高中数学 > 题目详情
求下列函数的最大值与最小值:

       (1) =x4-lnx4,x∈[-e,-];

       (2) =,x∈(-1,1)(a>0,b>0).

      

解析:(1) =x4-lnx4在[-e,-]上可导,?

       f′(x)=4x3-.?

       令f′(x)=0,得x=-1或x=1(舍去).?

       ∵f(-e)=e4-4,f(-)=e-4+4,f(-1)=1,?

       ∴的最大值为e4-4,最小值为1.?

       (2)f′(x)=,?

       令f′(x)=0,即b2x2-a2(1-x)2=0.?

       解得x=.?

       当0<x<时,f′(x)<0;?

       当<x<1时,f′(x)>0.?

       ∴在点x=处取得极小值,即的最小值为f()=(a+b)2.

       由于x→1时,→+∞,函数无最大值.?

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•黄埔区一模)对于函数y=f(x)与常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“P数对”.设函数f(x)的定义域为R+,且f(1)=3.
(1)若(1,1)是f(x)的一个“P数对”,求f(210);
(2)若(-2,0)是f(x)的一个“P数对”,且当x∈[1,2)时f(x)=k(2-x),求f(x)在区间[1,22n)(n∈N*)上的最大值与最小值;
(3)若f(x)是增函数,且(2,-2)是f(x)的一个“P数对”,试比较下列各组中两个式子的大小,并说明理由. ①f(2-n)与2-n+2(n∈N*);②f(x)与2x+2(x∈(2-n,21-n],n∈N*).

查看答案和解析>>

科目:高中数学 来源:选修设计数学1-1北师大版 北师大版 题型:044

求下列各函数的最大值与最小值.

(1)f(x)=x3-2x2+1,x∈[-1,2],

(2)f(x)=,x∈(0,1)(a>0,b>0).

查看答案和解析>>

科目:高中数学 来源: 题型:044

求下列函数的最大值与最小值:?

   (1) =x4-?ln?x4,x∈[-e,-];?

   (2) =,x∈(-1,1)(a>0,b>0).

  

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的最大值与最小值及相应的x.

(1)y=acosx+b;

(2)y=cos2x+sinx-2.

查看答案和解析>>

同步练习册答案