A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$ |
分析 由周期求出ω,由五点法作图求出φ的值,可得函数的f(x)的解析式.再根据函数y=Asin(ωx+φ)的图象的变换规律,可得结论.
解答 解:由函数f(x)=sin(ωx+φ),(ω>0,|φ|<$\frac{π}{2}$)的图象可得T=$\frac{2π}{ω}$=$\frac{5π}{6}$-(-$\frac{π}{6}$)=π,∴ω=2.
再由五点法作图可得 2×(-$\frac{π}{6}$)+φ=0,∴φ=$\frac{π}{3}$.
故函数的f(x)的解析式为 f(x)=sin(2x+$\frac{π}{3}$)=sin2(x+$\frac{π}{6}$).
故把f(x)=sin2(x+$\frac{π}{6}$)的图象向右平移m(m>0)个单位长度,可得g(x)=sin2(x-m+$\frac{π}{6}$)的图象,
∵所得图象关于直线x=$\frac{π}{4}$对称,
∴g(x)=sin2($\frac{π}{4}$-m+$\frac{π}{6}$)=±1,
∴2($\frac{π}{4}$-m+$\frac{π}{6}$)=$\frac{π}{2}$+kπ,解得:m=$\frac{π}{6}$-kπ,k∈Z,
∴当k=0时,φ=$\frac{π}{6}$.
故选:B.
点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,函数y=Asin(ωx+φ)的图象的变换规律,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{2}$ | B. | 2 | C. | 2$\sqrt{2}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\overrightarrow{B{D}_{1}}$ | B. | $\overrightarrow{DB}$ | C. | $\overrightarrow{B{A}_{1}}$ | D. | $\overrightarrow{B{B}_{1}}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com