精英家教网 > 高中数学 > 题目详情

【题目】某学校为了解高三复习效果,从高三第一学期期中考试成绩中随机抽取50名考生的数学成绩,分成6组制成频率分布直方图如图所示:

(1)求的值;并且计算这50名同学数学成绩的样本平均数

(2)该学校为制定下阶段的复习计划,从成绩在的同学中选出3位作为代表进行座谈,记成绩在的同学人数位写出的分布列,并求出期望.

【答案】(Ⅰ) (Ⅱ)见解析

【解析】试题分析:(1)由 解得 ,根据各矩形中点横坐标与纵坐标的积求和即可得到该校名学生成绩的平均值;(2)成绩在的同学人数为,成绩在人数为,, 的可能取值为,根据排列组合知识求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得的数学期望.

试题解析:(1)由题 解得

(2)成绩在的同学人数为6,成绩在人数为4,

所以的分布列为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为梯形, 底面 . 

1)求证:平面 平面

2)设上的一点,满足,若直线与平面所成角的正切值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知鸡的产蛋量与鸡舍的温度有关,为了确定下一个时段鸡舍的控制温度,某企业需要了解鸡舍的温度(单位:℃),对某种鸡的时段产蛋量(单位: )和时段投入成本(单位:万元)的影响,为此,该企业收集了7个鸡舍的时段控制温度和产蛋量的数据,对数据初步处理后得到了如图所示的散点图和表中的统计量的值.

17.40

82.30

3.6

140

9.7

2935.1

35.0

其中.

1)根据散点图判断, 哪一个更适宜作为该种鸡的时段产蛋量关于鸡舍时段控制温度的回归方程类型?(给判断即可,不必说明理由)

2)若用作为回归方程模型,根据表中数据,建立关于的回归方程;

3)已知时段投入成本的关系为,当时段控制温度为28℃时,鸡的时段产蛋量及时段投入成本的预报值分别是多少?

附:①对于一组具有有线性相关关系的数据,其回归直线的斜率和截距的最小二乘估计分别为

0.08

0.47

2.72

20.09

1096.63

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)exax1.

1)求f(x)的单调增区间;

2)若f(x)在定义域R内单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)设,试讨论单调性;

(2)设,当时,任意,存在,使,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的最小正周期;

2)求函数的单调递增区间;

3)若把向右平移个单位得到函数,求在区间上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知 ,平面平面 中点.

(Ⅰ)证明: 平面

(Ⅱ)求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆锥曲线 (是参数)和定点,是圆锥曲线的左、右焦点.

(1)求经过点且垂直于直线的直线的参数方程;

(2)以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,求直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:

0

0

2

0

0

(1)请将上表数据补充完整,填写在相应位置,并求出函数的解析式;

(2)把的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位长度,得到函数的图象,求的值.

查看答案和解析>>

同步练习册答案