A. | 4030 | B. | 4028 | C. | 2015 | D. | 2014 |
分析 f(a2)+f(a2014)=0,可得$({a}_{2}-1)^{3}+2014({a}_{2}-1)$+$({a}_{2014}-1)^{3}$+2014(a2014-1)=0,化为a2+a2014=2.再利用等差数列的前n项和公式即可得出.
解答 解:∵f(a2)+f(a2014)=0,
∴$({a}_{2}-1)^{3}+2014({a}_{2}-1)$+$({a}_{2014}-1)^{3}$+2014(a2014-1)=0,
设a2-1=a,a2014-1=b,
∴a3+2014a+b3+2014b=0,
化为(a+b)(a2+b2-ab+2014)=0,
∵a2+b2-ab+2014>0,
∴a+b=0,
即a2+a2014=2.
∴S2015=$\frac{2015({a}_{1}+{a}_{2015})}{2}$=$\frac{2015({a}_{2}+{a}_{2014})}{2}$=2015,
故选:C.
点评 本题考查了等差数列的前n项和公式及其性质、乘法公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a<b<c | B. | c<b<a | C. | c<a<b | D. | b<a<c |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 64 | B. | 4$\sqrt{2}$ | C. | $\frac{\sqrt{2}}{4}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com