精英家教网 > 高中数学 > 题目详情

【题目】设数列{an}满足a1=.(1)证明:数列为等比数列,并求数列{an}的通项公式;(2)设cn=(3n+1)an,证明:数列{cn}中任意三项不可能构成等差数列.

【答案】(1);(2)见解析

【解析】

(1)根据题意,由构造,两式相除即可得,由等比数列的定义分析可得答案;(2)用反证法分析:假设存在正整数,使得成等差数列,由等差数列的定义可得,即,变形可得,分析可得矛盾,即可得证明.

(1)证明:由条件, ,①

,②

a1=an>0, ∴an+1>0.

①/②得, ,

是首项为,公比为的等比数列.

因此,, ∴ .

(2)证明:由(1)得,cn=(3n+1)an=3n-1,

(反证法)假设存在正整数l,m,n1≤l<m<n,使得cl,cm,cn成等差数列.

span>则2(3m-1)=3l+3n-2,即2·3m=3l+3n

则有2·3m-l=1+3n-l,即2·3m-l-3n-l=1,

则有3m-l·[2-3n-l-(m-l)]=1,3m-l·(2-3n-m)=1.

,∴

矛盾,

故假设不成立,所以数列{cn}中任意三项不可能构成等差数列

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某种产品的广告费支出与销售额 (单位:万元)具有较强的相关性,且两者之间有如下对应数据:

2

4

5

6

8

28

36

52

56

78

(1)求关于的线性回归方程

(2)根据(1)中的线性回归方程,当广告费支出为10万元时,预测销售额是多少?

参考数据:

附:回归方程中斜率和截距的最小二乘估计公式分别为:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂某种产品的年固定成本为250万元,每生产千件,需另投入成本为,当年产量不足80千件时,(万元).当年产量不小于80千件时(万元).每件商品售价为0.05万元.通过分析,该工厂生产的商品能全部售完.

(1)写出年利润(万元)关于年产量(千件)的函数解析式;

(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线y2=2px(p>0)的准线为l,若l与圆x2+y2+6x+5=0的交点为A,B,且|AB|=2 .则p的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,函数g(x)=f(x)﹣k.
(1)当m=2时,若函数g(x)有两个零点,则k的取值范围是
(2)若存在实数k使得函数g(x)有两个零点,则m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点为,离心率为. 点为圆上任意一点, 为坐标原点.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)记线段与椭圆交点为,求的取值范围;

(Ⅲ)设直线经过点且与椭圆相切, 与圆相交于另一点,点关于原点的对称点为,试判断直线与椭圆的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是等差数列,{bn}是等比数列,其中a1=b1=1,a2b2,且b2a1a2的等差中项,a2b2b3的等差中项.

(1)求数列{an}{bn}的通项公式;

(2),求数列{cn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为正方形,平面.

(1)求证:

(2)若点在线段上,且满足,求证:平面

(3)求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点, 轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为为曲线上的动点,点在线段上,且满足

1)求点的轨迹的直角坐标方程;

2)直线的参数方程是为参数),其中 交于点,求直线的斜率.

查看答案和解析>>

同步练习册答案