精英家教网 > 高中数学 > 题目详情
如图,内外两个椭圆的离心率相同,从外层椭圆顶点向内层椭圆引切线AC,BD,设内层椭圆方程为 ,若直线AC与BD的斜率之积为,则椭圆的离心率为(  )
A.B.C.D.
C

试题分析:【方法一】由于内层椭圆和外层椭圆的离心率相等,不妨设外层椭圆的方程为,设切线的方程为,则
消去

化简得
同理可得
因此,所以,因此
故椭圆的离心率为.故选C.
【方法二】椭圆在其上一点处的切点方程为
,由于内外两个椭圆的离心率相同,则可设外层椭圆的方程为,则,内层椭圆在点C处的切线方程为,而AC的方程为,其斜率为,同理直线BD的方程为,其斜率为
  ①,
直线AC过点,则有
直线BD过点,则有,∴
,∴,设
不妨设点C为第一象限内的点,则点D为第二象限内的点,则为锐角,为钝角,
,∴,则为锐角,∴
,∴,由①式得,
,∴
,∴,∴,故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知点,若动点满足
(1)求动点的轨迹曲线的方程;
(2)在曲线上求一点,使点到直线:的距离最小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)已知圆Ox2y2=3的半径等于椭圆E=1(a>b>0)的短半轴长,椭圆E的右焦点F在圆O内,且到直线lyx的距离为,点M是直线l与圆O的公共点,设直线l交椭圆E于不同的两点A(x1y1),B(x2y2).

(1)求椭圆E的方程;
(2)求证:|AF|-|BF|=|BM|-|AM|.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的右准线方程是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:+=1(a>b>0)的一个顶点为A(2,0),离心率为.直线y=k(x-1)与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程;
(2)当△AMN的面积为时,求k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆右焦点且斜率为1的直线被椭圆截得的弦MN的长为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若已知中心在原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F1,F2,且两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,椭圆与双曲线的离心率分别为e1,e2,则e1·e2的取值范围是(  )
A.(0,+∞)B.(,+∞)
C.(,+∞)D.(,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

斜率为1的直线l与椭圆+y2=1交于不同两点A,B,则|AB|的最大值为(  )
A.2B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知焦点在x轴上的椭圆的离心率为,且它的长轴长等于圆C:x2+y2-2x-15=0的半径,则椭圆的标准方程是(  )
A.+=1B.+=1
C.+y2=1D.+=1

查看答案和解析>>

同步练习册答案