精英家教网 > 高中数学 > 题目详情
5.已知全集为R,集合A={x|2x≥1},B={x|x2-6x+8≤0},则A∩B=[2,4].A∩∁RB=[0,2)∪(4,+∞).∁R(A∪B)=(-∞,0).

分析 求出A与B中不等式的解集,确定出A与B,找出A与B的交集,求出A与B补集的交集,确定出A与B并集的补集即可.

解答 解:由A中不等式变形得:2x≥1=20,解得:x≥0,即A=[0,+∞),
由B中不等式变形得:(x-2)(x-4)≤0,
解得:2≤x≤4,即B=[2,4],
∴∁RB=(-∞,2)∪(4,+∞),A∪B=[0,+∞),
则A∩B=[2,4];A∩∁RB=[0,2)∪(4,+∞);∁R(A∪B)=(-∞,0),
故答案为:[2,4];[0,2)∪(4,+∞);(-∞,0)

点评 此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知集合M={x|x≤1},P={x|x>t},若M∪P=R,则实数t的取值范围是t<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数y=$\frac{2+x}{x-1}$的单调递减区间是(-∞,1),(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图所示的函数F(x)的图象是由指数函数f(x)=ax(a>0且a≠1)与幂函数g(x)=xa“拼接“而成的,则下列四个数中最大的是(  )
A.aaB.aαC.ααD.αa

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.化简:cos$\frac{α}{2}$•$\sqrt{\frac{1-sin\frac{α}{2}}{1+sin\frac{α}{2}}}$+cos$\frac{α}{2}$•$\sqrt{\frac{1+sin\frac{α}{2}}{1-sin\frac{α}{2}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知平面α∥平面β,直线a∥α,直线b∥β,那么a与b的关系必定是(  )
A.平行或相交B.相交或异面C.平行或异面D.平行、相交或异面

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知a=$\int_0^{\frac{π}{6}}{cosxdx}$,则${(x+\frac{a}{x})^8}$的展开式中的常数项是$\frac{35}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设x∈R,则“x=±1”是“复数z=(x2-1)+(x+2)i为纯虚数”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.定义在R上的奇函数f(x),当x>0时,$f(x)=2+f(\frac{1}{2}){log_2}x$,则f(-2)=-3.

查看答案和解析>>

同步练习册答案