精英家教网 > 高中数学 > 题目详情

【题目】已知 为自然对数的底数,若对任意的 ,总存在唯一的 ,使得 成立,则实数 的取值范围是( )
A.
B.
C.
D.

【答案】D
【解析】设 ,当 时, ,函数 上为增函数,

对任意的 ,总存在唯一的 ,使得 成立,则

的不含极值点的单调区间的子集, 上递减,在 上递增,最小值 ,最大值为 ,①要使得对任意的 ,总存在唯一的 ,使得 成立,则 的最大值不大于 的最大值 ,解得 ;② 上递减,在 上递增, 的值域为 时,有两个 值与之对应,若只有唯一的 ,则 的最小值要比 大,即:

综上: 的取值范围是
选答案为:D.

等式关于x恒成立,关于y能成立,问题转化为函数f(x)的值域是函数g(y)的不含极值点的单调区间的子集,是解题要点。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】二分法是求方程近似解的一种方法,其原理是“一分为二、无限逼近”.执行如图所示的程序框图,若输入x1=1,x2=2,d=0.01则输出n的值(
A.6
B.7
C.8
D.9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数列{an},定义 为{an}的“优值”,现在已知某数列{an}的“优值” ,记数列{an﹣kn}的前n项和为Sn , 若Sn≤S5对任意的n∈N+恒成立,则实数k的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= . (I)求函数f(x)的单调区间;
(II)若不等式f(x)> 恒成立,求整数k的最大值;
(III)求证:(1+1×2)(1+2×3)…(1+n(n×1))>e2n﹣3(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=( x3﹣x2+ )cos2017 + )+2x+3在[﹣2015,2017]上的最大值为M,最小值为m,则M+m=(
A.5
B.10
C.1
D.0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=mln(x+1)﹣nx在点(1,f(1))处的切线与y轴垂直,且 ,其中 m,n∈R.
(Ⅰ)求m,n的值,并求出f(x)的单调区间;
(Ⅱ)设g(x)=﹣x2+2x,确定非负实数a的取值范围,使不等式f(x)+x≥ag(x)在[0,+∞)上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lg( )为奇函数.
(1)求m的值,并求f(x)的定义域;
(2)判断函数f(x)的单调性,并证明;
(3)若对于任意θ∈[0, ],是否存在实数λ,使得不等式f(cos2θ+λsinθ﹣ )﹣lg3>0.若存在,求出实数λ的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xex+ax2+2x+1在x=﹣1处取得极值.
(1)求函数f(x)的单调区间;
(2)若函数y=f(x)﹣m﹣1在[﹣2,2]上恰有两个不同的零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正三角形ABC的边长为2,将它沿高AD翻折,使点B与点C间的距离为 ,此时四面体ABCD外接球表面积为

查看答案和解析>>

同步练习册答案