精英家教网 > 高中数学 > 题目详情

【题目】手机支付也称为移动支付,是指允许移动用户使用其移动终端(通常是手机)对所消费的商品或服务进行账务支付的一种服务方式.继卡类支付、网络支付后,手机支付俨然成为新宠.某金融机构为了了解移动支付在大众中的熟知度,对15-65岁的人群随机抽样调查,调查的问题是“你会使用移动支付吗?”其中,回答“会”的共有100个人,把这100个人按照年龄分成5组,然后绘制成如图所示的频率分布表和频率分布直方图.

组数

第l组

第2组

第3组

第4组

第5组

分组

频数

20

36

30

10

4

(1)求

(2)从第l,3,4组中用分层抽样的方法抽取6人,求第l,3,4组抽取的人数:

(3)在(2)抽取的6人中再随机抽取2人,求所抽取的2人来自同一个组的概率.

【答案】(1) ;(2) 第1组2人,第3组3人,第4组1人;(3)

【解析】

(1)直接计算.

(2)根据分层抽样的规律按照比例抽取.

(3)设第1组抽取的2人为,第3组抽取的3人为,第4组抽取的1人为,排列出所有可能,再计算满足条件的个数,相除得到答案.

解:(1)由题意可知,

(2)第1,3,4组共有60人,所以抽取的比例是

则从第1组抽取的人数为,从第3组抽取的人数为,从第4组抽取的人数为

(3)设第1组抽取的2人为,第3组抽取的3人为,第4组抽取的1人为,则从这6人中随机抽取2人有如下种情形:

共有15个基本事件.

其中符合“抽取的2人来自同一个组”的基本事件有共4个基本事件,

所以抽取的2人来自同一个组的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂为检验车间一生产线工作是否正常,现从生产线中随机抽取一批零件样本,测量它们的尺寸(单位:)并绘成频率分布直方图,如图所示.根据长期生产经验,可以认为这条生产线正常状态下生产的零件尺寸服从正态分布,其中近似为零件样本平均数近似为零件样本方差.

(1)求这批零件样本的的值(同一组中的数据用该组区间的中点值作代表);

(2)假设生产状态正常,求

(3)若从生产线中任取一零件,测量其尺寸为,根据原则判断该生产线是否正常?

附:;若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式的解集为.

1)求;(2)解关于的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体中,侧面对角线上分别有一点EF,且,则直线EF与平面ABCD所成的角的大小为(

A.B.60°C.45°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某书店刚刚上市了《中国古代数学史》,销售前该书店拟定了5种单价进行试销,每种单价(元)试销l天,得到如表单价(元)与销量(册)数据:

单价(元)

18

19

20

21

22

销量(册)

61

56

50

48

45

(l)根据表中数据,请建立关于的回归直线方程:

(2)预计今后的销售中,销量(册)与单价(元)服从(l)中的回归方程,已知每册书的成本是12元,书店为了获得最大利润,该册书的单价应定为多少元?

附:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年春季,世界各地相继出现流感疫情,这已经成为全球性的公共卫生问题.为了考察某种流感疫苗的效果,某实验室随机抽取100只健康小鼠进行试验,得到如下列联表:

感染

未感染

总计

注射

10

40

50

未注射

20

30

50

总计

30

70

100

参照附表,在犯错误的概率最多不超过__________的前提下,可认为“注射疫苗”与“感染流感”有关系.

(参考公式:.)

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若一个人下半身长(肚脐至足底)与全身长的比近似为,称为黄金分割比),堪称“身材完美”,且比值越接近黄金分割比,身材看起来越好,若某人着装前测得头顶至肚脐长度为72,肚脐至足底长度为103,根据以上数据,作为形象设计师的你,对TA的着装建议是( )

A.身材完美,无需改善B.可以戴一顶合适高度的帽子

C.可以穿一双合适高度的增高鞋D.同时穿戴同样高度的增高鞋与帽子

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读如图的算法框图,输出的结果S的值为(

A.
B.0
C.
D.-

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面ABCD是正方形,PD⊥平面ABCD,E为PB上的点,且2BE=EP.

(1)证明:AC⊥DE;
(2)若PC= BC,求二面角E﹣AC﹣P的余弦值.

查看答案和解析>>

同步练习册答案