精英家教网 > 高中数学 > 题目详情
定义在R上的偶函数f(x)满足:对任意x1,x2∈(-∞,0](x1≠x2),都有
x2-x1
f(x2)-f(x1)
>0则(  )
A、f(-5)<f(4)<f(6)
B、f(4)<f(-5)<f(6)
C、f(6)<f(-5)<f(4)
D、f(6)<f(4)<f(-5)
考点:函数单调性的判断与证明
专题:计算题,函数的性质及应用
分析:
x2-x1
f(x2)-f(x1)
>0判断出(x2-x1)(f(x2)-f(x1))>0,进而可推断f(x)在x1,x2∈(-∞,0](x1≠x2)上单调递增,又由于f(x)是偶函数,可知在x1,x2∈[0,+∞)(x1≠x2)单调递增.进而可判断出f(4),f(-5)和f(6)的大小.
解答: 解:∵
x2-x1
f(x2)-f(x1)
>0,
∴(x2-x1)(f(x2)-f(x1))>0则f(x)在x1,x2∈(-∞,0](x1≠x2)上单调递增,
又f(x)是偶函数,故f(x)在x1,x2∈[0,+∞)(x1≠x2)单调递减.
且满足n∈N*时,f(-5)=f(5),6>5>4>0,
得f(4)<f(-5)<f(6),
故选:B.
点评:本题主要考查了函数奇偶性的应用和函数的单调性的应用,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,已知a1=1,an+1-an=sin
(n+1)π
2
,记Sn为数列{an}的前n项和,则S2014=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(x2-
1
x
12的展开式的常数项是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x+1)=x2-2.
(1)求f(2)的值;
(2)求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物y=x2-2mx-(m2+2m+1)
(1)求证:不论m取何值,抛物线必与x轴交于两点;
(2)若函数的定义域为{x|-1≤x≤1},求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

某企业有三个车间,第一车间有x人,第二车间有300人,第三车间有y人,采用分层抽样的方法抽取容量为45的样本,第一车间被抽到20人,第二车间被抽到10人,问这个企业第一车间和第三车间各有多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(3x+
π
4
).
(1)求函数的周期及对称轴方程;
(2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-ax-1(e为自然对数的底数),a>0.
(Ⅰ)若函数f(x)恰有一个零点,证明:aa=ea-1
(Ⅱ)若f(x)≥0对任意x∈R恒成立,求实数a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x+3)2+(y-4)2=4
(1)若直线l1过点A(-1,0),且与圆C相切,求直线l1的方程;
(2)若圆D的半径为1,圆心D在直线l2:x+y-2=0上,且与圆C内切,求圆D的方程.

查看答案和解析>>

同步练习册答案